Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LncRNA UCC promotes epithelial–mesenchymal transition via the miR-143-3p/SOX5 axis in non-small-cell lung cancer

Abstract

Long non-coding RNAs (lncRNAs) have been found to play regulatory roles in cancers; for example, UCC was reported to promote colorectal cancer progression. However, the function of UCC in non-small-cell lung cancer (NSCLC) remains unclear. Therefore, mRNA and protein levels were assessed using qPCR and western blots. Cell viability was assessed by colony-formation assays. The interaction between lncRNAs and miRNAs was detected by dual-luciferase reporter and RIP assays. The tumorigenesis of NSCLC cells in vivo was determined by xenograft assays. LncRNA UCC was highly expressed in both NSCLC tissues and cells. Knockdown of UCC expression suppressed the proliferation of NSCLC cells. In addition, a dual-luciferase reporter system and RIP assays showed that UCC specifically bound to miR-143-3p and acted as a sponge of miR-143-3p in NSCLC cells. The miR-143-3p inhibitor rescued the inhibitory effect of sh-UCC on the proliferation of NSCLC cells. Moreover, miR-143-3p and UCC showed opposite effects on the expression of SOX5, which promoted EMT in NSCLC cells. In addition, in a mouse model, knockdown of UCC expression alleviated EMT and NSCLC progression in vivo, which was consistent with the in vitro results. In the current study, we found that UCC induced the proliferation and migration of NSCLC cells both in vitro and in vivo by inducing the expression of SOX5 via miR-143-3p and subsequently promoted EMT in NSCLC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The effect of lncRNA UCC in NSCLC.
Fig. 2: LncRNA UCC suppressed the expression of miR-143-3p.
Fig. 3: LncRNA UCC reduced miR-143-3p levels and promoted the proliferation and migration of NSCLC cells.
Fig. 4: MiR-143-3p suppressed SOX5 expression.
Fig. 5: LncRNA UCC promoted EMT in NSCLC by inducing SOX5 levels.
Fig. 6: The effect of lncRNA UCC on the proliferation and EMT of NSCLC in vivo.

Data availability

All data generated during this study are available within the articel.

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Seve P, Reiman T, Dumontet C. The role of betaIII tubulin in predicting chemoresistance in non-small cell lung cancer. Lung Cancer. 2010;67:136–43.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Raungrut P, Wongkotsila A, Lirdprapamongkol K, Svasti J, Geater SL, Phukaoloun M, et al. Prognostic significance of 14-3-3γ overexpression in advanced non-small cell lung cancer. Asian Pac J Cancer Prev. 2014;15:3513–8.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96:1297–325.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158:593–606.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3:ra8.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hudson WH, Pickard MR, de Vera IM, Kuiper EG, Mourtada-Maarabouni M, Conn GL, et al. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate. Nat Commun. 2014;5:5395.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Zhou N, Si Z, Li T, Chen G, Zhang Z, Qi H. Long non-coding RNA CCAT2 functions as an oncogene in hepatocellular carcinoma, regulating cellular proliferation, migration and apoptosis. Oncol Lett. 2016;12:132–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Liu L, Zhao X, Zhu X, Zhong Z, Xu R, Wang Z, et al. Decreased expression of miR-430 promotes the development of bladder cancer via the upregulation of CXCR7. Mol Med Rep. 2013;8:140–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Chen GS, Zhou N, Li JQ, Li T, Zhang ZQ, Si ZZ. Restoration of miR-20a expression suppresses cell proliferation, migration, and invasion in HepG2 cells. Onco Targets Ther. 2016;9:3067–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Shen ED, Liu B, Yu XS, Xiang ZF, Huang HY. The effects of miR-1207-5p expression in peripheral blood on cisplatin-based chemosensitivity of primary gallbladder carcinoma. Onco Targets Ther. 2016;9:3633–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Xiao P, Liu W, Zhou H. miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1. Mol Med Rep. 2016;14:1835–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Wang Y, Kong D. Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J Cell Biochem. 2018;119:669–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Xu R, Feng F, Yu X, Liu Z, Lao L. LncRNA SNHG4 promotes tumour growth by sponging miR-224-3p and predicts poor survival and recurrence in human osteosarcoma. Cell Prolif. 2018;51:e12515.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Liu K, Hou Y, Liu Y, Zheng J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J Biomed Sci. 2017;24:46.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Kong D, Wang Y. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J Cell Biochem. 2018;119:1050–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Zhang H, Lu W. LncRNA SNHG12 regulates gastric cancer progression by acting as a molecular sponge of miR‑320. Mol Med Rep. 2018;17:2743–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zhang L, Kang W, Lu X, Ma S, Dong L, Zou B. LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway. Cell Cycle. 2018;17:1886–900.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Liu J, Liu L, Wan JX, Song Y. Long noncoding RNA SNHG20 promotes gastric cancer progression by inhibiting p21 expression and regulating the GSK-3β/ β-catenin signaling pathway. Oncotarget. 2017;8:80700–8.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 2016;76:6299–310.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Wang C, Han C, Zhang Y, Liu F. LncRNA PVT1 regulate expression of HIF1α via functioning as ceRNA for miR‑199a‑5p in non‑small cell lung cancer under hypoxia. Mol Med Rep. 2018;17:1105–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wang X, Zhang G, Cheng Z, Dai L, Jia L, Jing X, et al. Knockdown of LncRNA-XIST suppresses proliferation and TGF-β1-induced EMT in NSCLC through the Notch-1 Pathway by regulation of miR-137. Genet Test Mol Biomark. 2018;22:333–42.

    CAS  Article  Google Scholar 

  25. 25.

    Chen Z, Xu D, Zhang T. Inhibition of proliferation and invasion of hepatocellular carcinoma cells by lncRNA-ASLNC02525 silencing and the mechanism. Int J Oncol. 2017;51:851–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Lv J, Kong Y, Gao Z, Liu Y, Zhu P, Yu Z. LncRNA TUG1 interacting with miR-144 contributes to proliferation, migration and tumorigenesis through activating the JAK2/STAT3 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol. 2018;101:19–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Gu J, Wang Y, Wang X, Zhou D, Shao C, Zhou M, et al. Downregulation of lncRNA GAS5 confers tamoxifen resistance by activating miR-222 in breast cancer. Cancer Lett. 2018;434:1–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Hu HB, Chen Q, Ding SQ. LncRNA LINC01116 competes with miR-145 for the regulation of ESR1 expression in breast cancer. Eur Rev Med Pharmacol Sci. 2018;22:1987–93.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ma Y, Bu D, Long J, Chai W, Dong J. LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. J Cell Physiol. 2019;234:2880–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Huang FT, Chen WY, Gu ZQ, Zhuang YY, Li CQ, Wang LY, et al. The novel long intergenic noncoding RNA UCC promotes colorectal cancer progression by sponging miR-143. Cell Death Dis. 2017;8:e2778.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Pagliuca A, Valvo C, Fabrizi E, di Martino S, Biffoni M, Runci D, et al. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene. 2013;32:4806–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14:1295–306.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Zou H, Wang S, Wang S, Wu H, Yu J, Chen Q, et al. SOX5 interacts with YAP1 to drive malignant potential of non-small cell lung cancer cells. Am J Cancer Res. 2018;8:866–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wunderle VM, Critcher R, Ashworth A, Goodfellow PN. Cloning and characterization of SOX5, a new member of the human SOX gene family. Genomics. 1996;36:354–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Wang D, Han S, Wang X, Peng R, Li X. SOX5 promotes epithelial–mesenchymal transition and cell invasion via regulation of Twist1 in hepatocellular carcinoma. Med Oncol. 2015;32:461.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kordaß T, Weber CE, Oswald M, Ast V, Bernhardt M, Novak D, et al. SOX5 is involved in balanced MITF regulation in human melanoma cells. BMC Med Genom. 2016;9:10.

    Article  CAS  Google Scholar 

  38. 38.

    Wu K, Zhao Z, Liu K, Zhang J, Li G, Wang L. Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment. Cell Cycle. 2017;16:1295–301.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Howlader N,NA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, et al. SEER cancer statistics review, 1975–2012. National Cancer Institute; 2015.

  40. 40.

    Luo W, He H, Xiao W, Liu Q, Deng Z, Lu Y, et al. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A. Oncotarget. 2016;7:54733–43.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Li W, Zhai L, Wang H, Liu C, Zhang J, Chen W, et al. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget. 2016;7:27778–86.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Zhang YL, Li XB, Hou YX, Fang NZ, You JC, Zhou QH. The lncRNA XIST exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in human non-small cell lung cancer. Acta Pharmacol Sin. 2017;38:371–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Lai T, Jabaudon D, Molyneaux BJ, Azim E, Arlotta P, Menezes JR, et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron. 2008;57:232–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Ikeda T, Zhang J, Chano T, Mabuchi A, Fukuda A, Kawaguchi H, et al. Identification and characterization of the human long form of Sox5 (L-SOX5) gene. Gene. 2002;298:59–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Stolt CC, Schlierf A, Lommes P, Hillgärtner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell. 2006;11:697–709.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Hersh CP, Silverman EK, Gascon J, Bhattacharya S, Klanderman BJ, Litonjua AA, et al. SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. Am J Respir Crit Care Med. 2011;183:1482–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Shiseki M, Masuda A, Yoshinaga K, Mori N, Okada M, Motoji T, et al. Identification of the SOX5 gene as a novel IGH-involved translocation partner in BCL2-negative follicular lymphoma with t(12;14)(p12.2;q32). Int J Hematol. 2015;102:633–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Hu J, Tian J, Zhu S, Sun L, Yu J, Tian H, et al. Sox5 contributes to prostate cancer metastasis and is a master regulator of TGF-beta-induced epithelial mesenchymal transition through controlling Twist1 expression. Br J Cancer. 2018;118:88–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Li G, Wang K, Wang J, Qin S, Sun X, Ren H. miR-497-5p inhibits tumor cell growth and invasion by targeting SOX5 in non-small-cell lung cancer. J Cell Biochem. 2019;120:10587–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Liu P, Li X, Guo X, Chen J, Li C, Chen M, et al. Circular RNA DOCK1 promotes bladder carcinoma progression via modulating circDOCK1/hsa-miR-132-3p/Sox5 signalling pathway. Cell Prolif. 2019;52:e12614.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ding S, Zhang Y. MicroRNA‑539 inhibits the proliferation and migration of gastric cancer cells by targeting SRY‑box 5 gene. Mol Med Rep. 2019;20:2533–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by funding Natural Science Foundation of Hunan Province (2019JJ80090), National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (Lung Cancer).

Author information

Affiliations

Authors

Contributions

RC: study design, definition of intellectual content, data acquisition, data analysis, statistical analysis, manuscript preparation, manuscript editing, manuscript review. CZ: guarantor of integrity of the entire study, study concepts, study design. YC: literature research, clinical studies, experimental studies, data acquisition, statistical analysis, manuscript preparation, manuscript editing. SW: clinical studies, experimental studies, data acquisition, statistical analysis. HL: clinical studies, experimental studies, data acquisition. HZ: guarantor of integrity of the entire study, study concepts, study design, literature research, data analysis, manuscript editing, manuscript review.

Corresponding author

Correspondence to Heng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All patients were well-informed and provided written informed consent. Current study was approved by the medical ethics committee of Xiangya Hospital Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zhang, C., Cheng, Y. et al. LncRNA UCC promotes epithelial–mesenchymal transition via the miR-143-3p/SOX5 axis in non-small-cell lung cancer. Lab Invest (2021). https://doi.org/10.1038/s41374-021-00586-6

Download citation

Search

Quick links