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Abstract
Highly expressed enhancer of zeste homolog 2 (EZH2) has been associated with many kinds of cancers and other diseases,
while its functional role in asthma is largely unknown. In our study, we investigated the molecular mechanism of EZH2 in
the development of asthma. An ovalbumin-induced mouse asthma model was established, followed by injection of short
hairpin RNA (sh)-EZH2, overexpression-B-cell translocation gene 2 (oe-BTG2), microRNA (miR)-34b agomir as well as
their corresponding controls. Next, primary bronchial epithelial cells were isolated and cultured, followed by treatment of oe-
FOXO3, miR-34b inhibitor, sh-EZH2, oe-BTG2, and corresponding controls. The effects of EZH2 on inflammation were
evaluated by determining levels of inflammatory factors interleukin (IL)-4, IL-5, IL-13, IL-17, and protein levels of
transforming growth factor β, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1. The interactions
between EZH2 and forkhead box O3 (FOXO3), between FOXO3 and miR-34b promoter, and between miR-34b and BTG2
were analyzed by conducting dual-luciferase reporter and chromatin immunoprecipitation assays. Notably, EZH2 and BTG2
were significantly overexpressed, while FOXO3 and miR-34b were obviously underexpressed in asthma. EZH2 silencing led
to inhibited inflammation though upregulation of FOXO3, which could bind to the miR-34b promoter and facilitate its
expression. In turn, miR-34b reduced BTG2 expression by targeting its 3’untranslated region. Our study provides evidence
that EZH2 promotes asthma progression by regulating the FOXO3-miR-34b-BTG2 axis.

Introduction

Asthma is a common chronic airway disorder afflicting over
300 million people worldwide [1]. Asthma is an urgent
public health problem both in developing and developed
countries, compounded by frequently late diagnosis and
poor treatment [2]. While asthma is often diagnosed in
childhood, it can arise in all age groups [3]. Previous data

have revealed that age did not correlate with the risk of
getting asthma, whereas other work shows that cold, obe-
sity, smoking, and certain other stimuli contribute to asthma
progression [4, 5]. Asthma is usually accompanied with
chronic airway inflammation [6], which can lead to airway
remodeling. Therefore, a better understanding of the
molecular mechanism in asthma is urgent for targeted
asthma diagnosis and treatment.

Enhancer of zeste homolog 2 (EZH2), a histone methyl-
transferase serving as a catalytic subunit of polycomb
repressive complex 2 (PRC2), can catalyze tr-methylation of
histone H3 at Lysine 27, leading to reduced expression of its
target genes, which are involved in various diseases includ-
ing asthma [7, 8]. Notably, previous studies have indicated
conspicuously downregulated expression of EZH2 in asthma.
Forkhead box O3 (FOXO3), a well-established tumor sup-
pressor gene, has been reported to be a target gene of EZH2
[9, 10], whereas other research showed that EZH2 could
mediate the expression of FOXO3 in breast cancer through
apparent modification of the promotor [11]. FOXO3 acts as a
transcription factor participating in the regulation of micro-
RNA (miRNA or miR) transcription [12]. It has been
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reported that overexpression of FOXO3 stimulates the
expression of miR-34b, thereby suppressing inflammatory
cytokine levels in airway epithelial cells in breast cancer [13].
miRNAs, which are small noncoding RNA molecules, are
among the key mechanisms in regulation of gene expression,
and have been implicated in the patho-mechanism of asthma
[14]. To be specific, expression patterns of miRNAs play
crucial roles in inflammation and pathological remodeling
through activation of airway structural cells and immune
cells and the promotion of cytokine generation [15]. One
previous publication demonstrated that the overexpression of
miR-34/449 suppressed fibrosis, fibrosis-related factors, and
proinflammatory cytokines by targeting insulin-like growth
factor binding protein-3 (IGFBP-3) [16]. Moreover, miR-34b
overexpression has been reported to relieve high glucose-
induced inflammation in human HK-2 cells [17]. Further-
more, there was a correlation between miR-34b and IGFBP-3
expression. Although numerous studies have reported that
miRNAs are critically involved in the regulation of asthma
progression, the dynamics of miR-34b expression during
asthma progression remains to be established exclusive.
Since identifying the upstream of miRNA may shed light on
molecular treatment targets for asthma, we performed gain
and loss of function assays to demonstrate a novel role of
EZH2 in asthma progression.

Materials and methods

Bioinformatics analysis

Downstream targets of EZH2 were predicted using the
RNAInter (http://www.rna-society.org/rnainter/), StarBase
(http://starbase.sysu.edu.cn/), and POSTAR databases
(http://lulab.life.tsinghua.edu.cn/postar/). The resultant
candidate genes were then overlapped by Jvenn (http://
jvenn.toulouse.inra.fr/app/example.html). String (https://
string-db.org/) was used to analyze gene interaction net-
work with minimum the required interaction score set as
0.4, with visualized by Cytoscape 3.5.1. Genecards
(https://www.genecards.org/) to analyze the asthma-related
genes, followed by intersection by jvenn. Downstream tar-
gets of miR-34b were predicted by the RNAInter, StarBase,
and RNA22 databases (https://cm.jefferson.edu/rna22/).

Study subjects

Specific pathogen-free female BALB/c mice (n= 56,
18–22 g, 6–8 weeks old) were obtained from Jiling Uni-
versity Laboratory Animal Center. Mice were maintained
under controlled standard conditions (12-h-light/dark cycle,
humidity 55 ± 5%, temperature 22 ± 2 °C) with free access
to food and water.

Establishment of ovalbumin (OVA)-induced mouse
asthma models and treatment

The mice were divided into seven groups (eight mice per
group): normal control, OVA-induce asthma, OVA+ short
hairpin RNA-negative control (sh-NC)+ overexpression
(oe)-NC, OVA+ oe-NC+ sh-EZH2, OVA+ sh-EZH2+
oe-B-cell translocation gene 2 (BTG2), OVA+NC agomir,
and OVA+miR-34b agomir. Mice were injected with
viruses carrying oe-NC, oe-BTG2, sh-NC, sh-EZH2, NC
agomir, and miR-34b agomir via tail vein at a dose of 5 ×
108 plaque forming units/mouse. To prepare the experi-
mental allergic asthma model, mice were immunized via
intraperitoneal injections of OVA (25 μg/mouse) (A-5253,
Sigma-Aldrich Chemical Company, St Louis, MO, USA)
with aluminum hydroxide (2 mg/mouse) (V-900163,
Sigma-Aldrich Chemical Company) on the 1st and 8th
days. From the 15th to the 28th day, mice were exposed to
5% (w/v) OVA solution for 30 min using a nebulizer every
day, and from the 30th to the 42nd day, mice were exposed
to 5% (w/v) OVA solution for 30 min every 2 days. At 24 h
after the last treatment, mice were euthanized by cervical
dislocation under anesthesia with sodium pentobarbital and
samples were collected for subsequent analysis.

Culture of primary bronchial epithelial cells (BECs)

Mice were euthanized under aseptic conditions. Separated
bronchi were placed into precooled Dulbecco’s modified
Eagle’s medium/Ham’s F-12 medium (DMEM/F12)
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) con-
taining streptomycin and then moved to phosphate-buffered
saline (PBS) to remove the connective tissues and blood
vessels. After that, the remaining bronchi tissues were
digested in the medium prepared by the mixture of DMEM/
F12 and Pronase at a 1:1 volume ratio for 24 h at 4 °C. After
digestion, DMEM/F12 was added to the sample and mixed
gently by shaking up and down and then centrifuged. Next,
DMEM/F12 medium containing penicillin and streptomycin
and 10% fetal bovine serum (10100147, Gibco BRL, Grand
Island, NY, USA) was used to resuspend the pellet and the
cells were seeded into Petri dishes. After 2 h, undetached
cells were collected and seeded into collagen-coated Petri
dishes and incubated at 37 °C in a humidified incubator
containing 95% air and 5% CO2. After 24 h, fresh DMEM/
F12 containing growth factor was used to replace the old
medium and incubation o the BECs resumed at 37 °C in a
humidified incubator containing 95% air and 5% CO2.
BECs were then treated oe-NC+ inhibitor NC, oe-FOXO3
+ inhibitor NC, oe-FOXO3+miR-34b inhibitor, sh-NC+
oe-NC, oe-NC+ sh-EZH2, and sh-EZH2+ oe-BTG2,
individually. All the shRNA and overexpression plasmids
containing cytomegalovirus immediate-early enhancer and
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chicken beta-actin (CAG) promoters were purchased from
GenePharma (Shanghai, China), which were tested before
experiments. The cells were seeded in six-well plates at a
density of 3 × 105 cells/well, and upon reaching approxi-
mately 50% confluence, were transfected according to the
instructions of the Lipofectamine 2000 reagent kit (Invi-
trogen Inc., Carlsbad, CA, USA). Plasmids pCAG-Cre-
IRES2-GFP (for overexpression) and pLVX-shRNA2-
PURO (for shRNA) were purchased from YouBio Bio-
technology Co., Ltd. (Changsha, Hunan, China). The
sequences of sh-NC, inhibitor NC, and sh-EZH2 were “5-
GGGUGAACUCACGUCAGAA-3,” “5-CAGUACUU
UUGUGUAGUACAA-3,” and “5-GAGGUUCAGACGA
GCUGAUUU-3,” respectively.

Hematoxylin eosin (HE) staining

Lung tissues were collected, fixed in 4% paraformaldehyde
for 24 h, dehydrated in ascending series of alcohol and then
N-butanol, paraffin-embedded, and sectioned. The sections
were then dewaxed by xylene, hydrated, and stained with
HE solution (Beijing Solarbio Science & Technology Co.,
Ltd., Beijing, China). Thereafter, the sections were cleared
with xylene, mounted in neutral resin, and observed under
an optical microscope (XP-330, Shanghai Bingyu Optical
Instrument Co., Ltd., Shanghai, China) in three randomly
selected complete cross-sections of small and medium-sized
bronchi from each mouse at 200× magnification. Image-
Proplus 6.0 software was used to measure the total area of
the wall (WAt), airway smooth muscle area (WAm), and
ASMC number (N), and the results were expressed in units
of area of the basement membrane by length. Lung
inflammation was assessed from the abundance of infil-
trating inflammatory cells surrounding the bronchial vessels
and rated depending on the staining intensity (0, none; 1,
mild; 2, moderate; 3, significant; 4, severe).

Masson’s trichrome staining

Lung tissues were collected, embedded, and sectioned. The
sections were then dewaxed, hydrated, and stained with
Regaud hematoxylin for 5–10 min. Following this, the
sections were counterstained with Masson Ponceau S acid
fuchsin solution for 5–10 min. Glacial acetic acid–water
solution was used to wash the sections, which were then
treated by addition of 1% phosphomolybdic acid for 3–5
min. Afterwards, samples were directly stained by aniline
blue and washed with 0.2% glacial acetic acid–water solu-
tion for a few seconds. After dehydration by gradient
ethanol, the sections were cleared by xylene and then sealed
with neutral resin, followed by observation under a micro-
scope and analysis of collagen deposition area by the Image
J software.

Enzyme-linked immunosorbent assay (ELISA)

Bronchoalveolar lavage fluid (BALF) was obtained via
tracheostomy with infusion of ice-cold PBS (0.6 mL) into
the lung three times (total volume of 1.2 mL). Levels of
interleukin (IL)-4 (JLC3599), IL-5 (JLC3600), IL-13
(JLC3556), and IL-17 (JLC3574) in the supernatant were
measured using ELISA kits according to the manufacturer’s
protocols. All kits were from Shanghai JingKang Bio-
technology Co., Ltd. (Shanghai, China).

Eosinophil (EOS) ratio measurement

BALF was centrifuged at 1500 rpm for 10 min, the super-
natant discarded, and the pellet resuspended for microscopic
examination. The amount of EOS was observed and coun-
ted using a hemocytometer according to the manufacturer’s
instructions.

Reverse transcription quantitative polymerase chain
reaction (RT-qPCR)

Total RNA was extracted using TRIzol reagents (Invitro-
gen) and reverse transcribed into complementary DNA
(cDNA) using the Ncode TM miRNA First-Strand cDNA
Synthesis kit (Thermo Fisher Scientific). RT-qPCR was
performed using the Fast SYBR Green PCR kit (Applied
Biosystems Inc., CA, USA) on an ABI PRISM 7300
instrument (Applied Biosystems, Foster City, CA, USA).
Primers are listed in Table 1. The miR-34b level was cal-
culated using the 2-△△CT method normalized to U6.

Protein extraction and quantification

Protein extraction was performed using protease inhibitor-
contained radioimmunoprecipitation assay buffer (Boster
Biological Technology Co., Ltd., Wuhan, Hubei, China).
The protein sample was separated using freshly prepared
sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
electro-transferred onto polyvinylidene fluoride membranes,
and probed with primary antibodies (Abcam Inc., Cam-
bridge, UK). Immunoblots were visualized with goat anti-
rabbit immunoglobulin G (IgG) (ab205719; 1:2000;

Table 1 Primer sequences used for RT-qPCR.

Target Primer sequences

miR-34b F: 5’-TCTATTTGCCATCGTCTA-3’

R: 5’-CAGGCAGCTCATTTGGAC-3’

U6 F: 5’-GCTTCGGCAGCACATATACTAAAAT-3’

R: 5’-CAGTGCGTGTCGTGGAGT-3’

miR-34b microRNA-34b, F forward, R reverse.
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Abcam,) and enhanced chemiluminescence detection
reagents, and then captured under the Bio-Rad image sys-
tem (Bio-Rad Inc., Hercules, CA, USA). Gray value of
target protein bands was quantified using the Image J

software, with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) used for normalization. Primary antibodies used
in this assay included EZH2 (ab245738, 1:500), FOXO3
(ab70315, 1:500), BTG2 (ab197362, 1:1000), histone H3
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Fig. 1 EZH2 suppressed FOXO3 expression in asthma in an epi-
genetic manner. A Potential downstream targets of EZH2 predicted
by the bioinformatics databases, RNAInter, StarBase, and POSTAR. B
Gene interaction network analyzed by STRING; the circles in the
picture represent the degree of the gene from large to small; the circle
color from blue to orange indicates the degree from large to small; the
line in the middle of the circle represents the interaction between
genes. C Venn map of intersection of asthma-related genes and target
genes in GeneCards database. D Lung tissue lesions determined by HE
staining. E Collagen deposition analyzed by Masson’s trichrome
staining. F Inflammatory cytokines and EOS in BALF determined by

ELISA. G Expression of EZH2 and FOXO3 determined by western
blot analysis. H Enrichment of EZH2 in FOXO3 promoter analyzed by
ChIP. I Enrichment of H3K27me3 in the FOXO3 promoter measure
by ChIP. J Expression of EZH2 and FOXO3 in mouse airway epi-
thelial cells detected by western blot analysis. K Enrichment of
H3K27me3 in the FOXO3 promoter in mouse BECs analyzed by
ChIP. *p < 0.05 compared to saline group or sh-NC. Statistical com-
parisons were performed using unpaired t-test when only two groups
were compared or by Tukey’s test-corrected one-way ANOVA with
when more than two groups were compared. N= 8.
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Lys27 trimethylation (H3K27me3) (ab192985, 1:1000),
transforming growth factor β (TGF-β) (ab92486, 1:500),
matrix metalloproteinase-9 (MMP9) (ab38898, 1:500), tis-
sue inhibitor of metalloproteinases-1 (TIMP-1) (ab61224,
1:1000), and GAPDH (ab18602, 1:5000).

Dual-luciferase reporter assay

The target genes of miR-34b were analyzed using the
biological prediction website Starbase. The plasmids
were extracted according to the instructions of Omega
Plasmid Extraction Kit (D6943–01, Beijing Zhijie Fan-
gyuan Technology, Beijing, China), after which the
recombinant plasmids were constructed and designated as
pmirGLO-BTG2–3’untranslated region (3’UTR)-wild
type (5’-GUUAGUCGAUUAAUGUGACGGA-3’) and
pmirGLO-BTG2–3’UTR-mutant type (5’-GUUAGUC
GAUUAAUACCGUCAA-3’). Cells from each group
were seeded into six-well plates at a density of 2 × 105

cells per well and transfected using the aforementioned
method after the BECs had adhered to the wall. Cell
lysate was collected after transfection for 48 h. The
indicated BTG2 promoter region was cloned into a
pmirGLO luciferase vector (Promega, WI, USA),
whereupon BTG2-pro was introduced into HEK-293T
cells in the presence of the indicated combination of NC-
mimic or miR-34b mimic. The luciferase activity was
determined using dual-luciferase assay kit (D0010,
Solarbio) on a Glomax20/20 luminometer (Promega).

Chromatin immunoprecipitation (ChIP)

Cells were treated with 1% formaldehyde for 10 min to
create protein–DNA crosslink, and the crosslinked chro-
matin was extracted and sheared by sonication. Protein A/G
beads were precleared and blocked with 1% salmon sperm
DNA and 1% bovine serum albumin. Total sheared chro-
matin was used for immunoprecipitation with either normal
rabbit IgG (ab109489, 1:300. Abcam) or EZH2 (1:100,
ab191250, Abcam) and H3K27me3 (1:100, ab6002,

Abcam) antibody. The immunoprecipitates were washed
five times, pelleted by centrifugation, and then heated at 65
°C for 4 h to break the crosslinking, followed by RT-qPCR
analysis.

Statistical analysis

All data were processed using SPSS 22.0 statistical software
(IBM Corp. Armonk, NY, USA). Data are shown as mean ±
standard deviation from at least three independent experi-
ments. Unless otherwise noted, statistical comparisons were
performed using unpaired t-test when only two groups were
compared or by Tukey’s test-corrected one-way analysis of
variance when more than two groups were compared. A
value of p < 0.05 represents statistical significance.

Results

EZH2 suppresses FOXO3 during asthma progression

A total of 120 candidate downstream targets of EZH2 were
predicted by RNAInter, StarBase, and POSTER (Fig. 1A).
Meanwhile, we analyzed the gene interaction by STRING
and visualized the interaction net by Cytoscape 3.5.1, which
showed phosphatase and tensin homolog deleted on chro-
mosome 10 (PTEN), thyroid hormone receptor interacting
protein 12 (TRIP12), FOXO3, and other 13 genes to be at
the core of the interaction net (Fig. 1B). Furthermore,
PTEN, exportin 1 (XPO1), mouse double minute 2 protein
(MDM2), and FOXO3 were detected to be involved in the
regulation of asthma from GeneCards (Fig. 1C). Previous
research demonstrated that FOXO3 was a downstream tar-
get of EZH2 [11, 12]. To investigate the regulation of
FOXO3 by EZH2 in asthma, we established an OVA-
induced mouse model and then analyzed mouse behaviors.
Compared to the normal group, the OVA group presented
with an increase in various degree of agitation, sneezing,
scratching of the ears and nose, back bowing, and forelimb
lifting after being exposed to the aerosol. Furthermore,
analysis using HE staining and Masson’s trichrome staining
revealed a significant increase of inflammatory infiltration,
airway smooth muscle thickening, epithelial cell damage,
and collagen hyperplasia in bronchi of the OVA group
(p < 0.05) (Fig. 1D, E and Table 2). Meanwhile, the levels
of IL-4, IL-5, IL-13, and IL-17 and EOS were also sig-
nificantly elevated in the BALF from the OVA-induced
group compared to saline group (p < 0.05) (Fig. 1F). Col-
lectively, these data indicated the successful establishment
of the OVA-induced mouse model. Based on this result, we
analyzed the expression of EZH2 and FOXO3 by western
blot analysis in lung tissues, which showed that, compared
to normal mice, EZH2 was significantly upregulated and

Table 2 Determination of the value of bronchial-related indexes of
normal and OVA mice.

Group Wat/Pbm (μm2/μm) Wam/Pbm (μm2/μm) N/Pbm (N/μm)

Saline 7.41 ± 0.82 3.12 ± 0.38 0.02 ± 0.01

OVA 16.32 ± 2.11* 6.24 ± 0.71* 0.06 ± 0.03*

Pbm the length of the basement membrane of the epithelium, Wam the
area of smooth muscle.

*p < 0.05 compared to Saline group. Statistical comparisons were
performed using unpaired t-test when only two groups were compared
or by Tukey’s test-corrected one-way ANOVA with when more than
two groups were compared.
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FOXO3 was dramatically decreased in OVA mice
(p < 0.05) (Fig. 1G). Meanwhile, increased enrichment of
EZH2 in the FOXO3 promoter was also found in the OVA
group upon analysis by ChIP assay (p < 0.05) (Fig. 1H).
Consistent with these findings, the enrichment of
H3K27me3 in the FOXO3 promoter was dramatically
increased in the OVA group (p < 0.05) (Fig. 1I). Further-
more, FOXO3 was significantly upregulated, while EZH2
was significantly downregulated in mouse BECs (p < 0.05)
(Fig. 1J). Furthermore, enrichment of H3K27me3 in the
FOXO3 promoter was dramatically decreased upon EZH2
inhibition (p < 0.05) (Fig. 1K). In conclusion, our data
revealed that decreased expression of FOXO3 in asthma
was mediated by EZH2 in an epigenetic manner.

EZH2 silencing suppresses inflammatory cytokines,
TGF-β, MMP9, and TIMP-1 expression by
upregulation of FOXO3

To investigate the role of EZH2 and FOXO3 in BECs, we
made a double knockdown EZH2 and FOXO3 to explore
their interacting functions in BECs. Western blot analysis
demonstrated that silencing of EZH2 upregulated FOXO3
expression, which could be counteracted by silencing of
FOXO3 (p < 0.05) (Fig. 2A). EZH2 silencing led to
decreased IL-4, IL-5, IL-13, and IL-17 levels measured by
ELISA, and depletion of FOXO3 restored the expression of
these inflammatory cytokines caused by EZH2 silencing
analyzed (p < 0.05) (Fig. 2B). Meanwhile, the protein levels
of TGF-β, TIMP-1, and MMP9 were significantly down-
regulated in the presence of EZH2 knockdown, which could
be reversed by depletion of FOXO3 (p < 0.05) (Fig. 2C).
Collectively, EZH2 silencing inhibited inflammatory cyto-
kine production and MMP9 and TIMP-1 expression by
upregulation of FOXO3.

FOXO3 promotes the transcription of miR-34b

Previous data revealed that FOXO3 directly binds to miR-
34b promoter and facilitates its expression [18]. To confirm
the regulation of miR-34b by FOXO3 in asthma, we
detected the expression of miR-34b in the mouse lung tis-
sues, which showed that miR-34b was significantly down-
regulated in lung tissues of OVA mice (p < 0.05) (Fig. 3A).
Meanwhile, enrichment of FOXO3 in the miR-34b pro-
moter was also dramatically reduced in the OVA group (p <
0.05) (Fig. 3B). Furthermore, we overexpressed or silenced
FOXO3 in airway epithelial cells (p < 0.05) (Fig. 3C) and
found that overexpression of FOXO3 elevated miR-34b
expression, which was dramatically downregulated upon
FOXO3 silencing (p < 0.05) (Fig. 3D). Consistent with the
change of miR-34b expression levels, enrichment of
FOXO3 in the miR-34b promoter was significantly

increased when FOXO3 overexpressed, but this effect was
abolished following FOXO3 silencing (p < 0.05) (Fig. 3E).
Taken together, our data revealed that FOXO3 could
directly bind to the miR-34b promoter and facilitated its
transcription.

Overexpressed FOXO3 inhibits the expression of
inflammatory cytokines, TGF-β, MMP9, and TIMP-1
by upregulation of miR-34b in BECs

To confirm the role of the FOXO3-miR-34b axis in airway
epithelial cells, we overexpressed FOXO3 and silenced
miR-34b (Fig. 4A). Overexpression of FOXO3 upregulated
miR-34b expression, which could be reversed by inhibition
of miR-34b (Fig. 4B). The inflammatory cytokines, IL-4,
IL-5, IL-13, and IL-17 were dramatically decreased when
FOXO3 was overexpressed, but miR-34b silencing restored
the downregulation of these cytokines caused by FOXO3
overexpression (p < 0.05) (Fig. 4C). Meanwhile, TGF-β,
MMP9, and TIMP-1 levels were dramatically down-
regulated by FOXO3 overexpression, but these effects
could also be reversed by inhibition of miR-34b (p < 0.05)
(Fig. 4D). In summary, overexpression of FOXO3 inhibited
inflammatory cytokines, MMP9, and TIMP-1 expression by
elevating miR-34b.

Ectopic expression of miR-34b inhibits inflammatory
cytokines, TGF-β, MMP9, and TIMP-1 expression by
directly targeting BTG2 in BECs

Five candidate downstream targets (NAV1, PEA15A,
SLC41A1, CR1L, and BTG22) of miR-34b were predicted
by RNAInter, StarBase, and RNA22 (Fig. 5A). Further-
more, according to the prediction of StarBase, miR-34b
could directly bind to BTG2 (Fig. 5B). Consistent with this
prediction, dual-luciferase assay demonstrated that miR-34b
could directly bind to BTG2 3’UTR (p < 0.05) (Fig. 5C).
Meanwhile, BTG2 was found to be significantly over-
expressed in OVA mice (p < 0.05) (Fig. 5D).

Furthermore, upon overexpressing miR-34b (p < 0.05)
(Fig. 5E), we found that BTG2 was strikingly down-
regulated (p < 0.05) (Fig. 5F), indicating that miR-34b
directly bound to BTG2 and suppressed its expression.
Next, we explored the role of the miR-34b-BTG2 axis in the
functioning of airway epithelial cells. We overexpressed
miR-34b and BTG2 in airway epithelial cells (p < 0.05)
(Fig. 5G), and showed that downregulated BTG2 expres-
sion could be reversed by overexpression of miR-34b
(Fig. 5H). IL-4, IL-5, IL-13, and IL-17 levels were sig-
nificantly downregulated after miR-34b was overexpressed
and ectopic expression of BTG2 restored the expression
of theses cytokines (p < 0.05) (Fig. 5H). Consistent with
this result, overexpression of BTG2 also reversed the
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downregulation of TIMP-1, MMP9, and TGF-β caused by
miR-34b overexpression (p < 0.05) (Fig. 5I). Taken toge-
ther, ectopic expression of miR-34b suppressed inflamma-
tory cytokines and TIMP-1 and MMP9 by downregulation
of BTG2.

EZH2 silencing inhibits inflammatory cytokines,
TGF-β, MMP9, and TIMP-1 expression by BTG2
through regulation of FOXO3-miR-34b axis in BECs

To verify whether EZH2 affected airway epithelial cells
function by BTG2, we silenced EZH2 and overexpressed
BTG2 to test their regulatory function in BECs. Western
blot analysis demonstrated that silencing of EZH2 down-
regulated BTG2 expression, which could be reversed by
overexpression of BTG2 (p < 0.05) (Fig. 6A). Consistent
with previous data, EZH2 silencing led to downregulation
of IL-4, IL-5, IL-13, and IL-17 and overexpression of
BTG2 restored the expression of these cytokines (Fig. 6B).
Meanwhile, re-expressed BTG2 also reversed the down-
regulation of MMP9, TIMP-1, and TGF-β caused by
depletion of EZH2 (p < 0.05) (Fig. 6C). Taken together, our
data revealed that EZH2 silencing downregulated

inflammatory cytokines, MMP9, and TIMP-1 by FOXO3-
miR-34b-BTG2 axis in BECs.

EZH2 silencing suppresses asthma progression
in vivo through regulation of the FOXO3-miR-34b-
BTG2 axis

Finally, we established an OVA-induced mouse model of
asthma, and tested the effects of treatments with sh-EZH2,
oe-BTG2, or miR-34b agomir to further explore their reg-
ulatory functions in asthma. FOXO3 and miR-34b were
dramatically upregulated in EZH2 silenced lung tissues.
Meanwhile, BTG2 was strikingly reduced in EZH2 silenced
lung tissue. Furthermore, miR-34b overexpression led to a
dramatic downregulation of BTG2 (p < 0.05) (Fig. 7A, B).
Based on these results, we analyzed the lung tissues by HE
staining, which showed that, much as with EZH2 silencing,
miR-34b overexpression led to reduced inflammatory
infiltration and histopathological scores. Meanwhile, BTG2
overexpression restored the reduced inflammatory infiltra-
tion and histopathological scores caused by EZH2 silencing
(p < 0.05) (Fig. 7C). On the other hand, Masson’s trichrome
staining results revealed that EZH2 silencing or miR-34b
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overexpression reduced the surface area of mouse lung
collagen deposition. Consistent with HE staining results,
ectopic expression of BTG2 also reduced the collagen
deposition area provoked by depletion of EZH2 (p < 0.05)
(Fig. 7D). Furthermore, similar to effects of EZH2 silen-
cing, miR-34b overexpression led to reduced IL-4, IL-5, IL-
13, IL-17, and EOS levels in the BALF. Meanwhile, re-
expression of BTG2 reversed the effects on expression of
these cytokines and EOS in EZH2 silenced lung tissues (p
< 0.05) (Fig. 7E). Consistent with the above, HE staining
revealed that WAt, WAm, and the number of ASMC-
stained nuclei were significantly downregulated in the lung
tissue of model mice upon EZH2 silencing or miR-34b
overexpression. Restoration of BTG2 in EZH2 silenced
lung tissues did not result in any such effect (p < 0.05)
(Table 3). In summary, EZH2 promoted asthma progression
via regulation of the FOXO3-miR-34b-BTG2 axis in vivo.

Discussion

EZH2, a core component of PRC2 complex, regulates
various biological processes such as cell cycle transition,
metastasis, and chemo-resistance by remodeling chromatin
methylation status through its catalytical activity [19–21].
Meanwhile, EZH2 also regulates signaling pathways by
methylating non-histone proteins [22]. Previous research
demonstrated that EZH2 played a role in asthma progres-
sion [8]. In this study, we established an OVA-induced
mouse model and performed gain and loss of function
analyses to demonstrate that elevation of EZH2 and BTG2
was essential for asthma development, thus casing light on
EZH2 as a potential drug target for asthma treatment.

Asthma is a chronic inflammatory disease of the airways
[23]. Inflammatory cytokines, IL-4, IL-5, IL-13, and IL-17
belong to the type 2 cytokines that are essential for regulating
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allergic responses such as production of IgE, inflammatory
reaction, and airway hyperresponsiveness in asthma patients
[24]. As is well known, these inflammatory cytokines are
produced by T helper (Th) cells. Ever mounting evidence has
revealed that epigenetic modification plays a vital role in
regulation of the production of type 2 cytokines by Th cells
[25]. Consistent with this, a recent study revealed that EZH2
is a central regulator of invariant natural killer T (iNKT)
pathogenicity and suppresses the ability of iNKT cells to
induce asthma-like pathology [8]. Likewise in the present
study, higher levels of EZH2 were found in the lung tissues
of OVA-induced asthma mice in our study. Furthermore, we
identified FOXO3 as a downstream target of EZH2. Con-
sistent with present results, earlier research demonstrated the
involvement of FOXO3 in inflammatory process [26]. Fur-
thermore, FOXO3 is involved in the regulation of T-cell
apoptosis and suppression of T-cell activation [27]. More-
over, the ability of FOXO3 to reduce production of proin-
flammatory cytokines has also been reported [28]. Our data
in vitro showed that FOXO3 silencing could restore the
reduced production of inflammatory cytokines caused by
EZH2 depletion, which indicate that EZH2 promotes asthma
progression by FOXO3.

miRNAs are involved in diverse biological process [29],
and several studies have shown their participation in the
regulation of asthma [30, 31]. Due to established role of
FOXO3 in regulation of miRNAs transcription, we identity
that an miRNA as an effective modulator in the EZH2-
FOXO3-mediated progression of asthmamiR-34b, a poten-
tial downstream target of FOXO3, was found to be down-
regulated in asthma lung tissues in which FOXO3 had low
expression. Furthermore, we confirmed that FOXO3
directly bound to miR-34b promoter and facilitated its
transcription. Previous evidence that focused on genome
wide profiling of bronchial epithelial brushings pointed
revealed that miR-34/449 family members, including miR-
34b-5p, were downregulated in asthma [32]. Furthermore,
significantly lower miR-34b/c expression was also observed
in the OVA-challenged group of mice [33]. Based on this
background, we conducted gain and loss of function assays,
which demonstrated that miR-34b played an essential role

in EZH2-mediated asthma in vivo and in vitro. Recently,
BTG2 was reported to activate nuclear factor-kappaB (ΝF-
κΒ) in response to reactive oxygen species, whereupon ΝF-
κΒ played a role in inflammation process [34, 35]. Our
study revealed that BTG2 was directly targeted by miR-34b.
Furthermore, overexpressed miR-34b could inhibit inflam-
mation and the expression of TIMP-1, MMP9, and TGF-β
through downregulation of BTG2. Previous work showed
that TIMP-1, MMP9, and TGF-β were all involved in the
progression of asthma [36, 37]. Also as reported previously,
BTG2 was highly expressed in diesel exhaust particle-
induced asthma [38]. By detection of these factors in vitro
and in vivo, we now have demonstrated the role of BTG2 as
the key factor in the EZH2-FOXO3-miR-34b axis to pro-
mote asthma progression.

In conclusion, our study uncovered a novel role of EZH2
in the regulation of asthma development. We demonstrated
the presence of a complete signaling pathway, which was
essential for asthma formation. EZH2, as an epigenetic
factor, promoted FOXO3 promoter levels of H3K27me3
and thereby suppressed FOXO3 expression. Downregulated
FOXO3 led to low expression of miR-34b, such that BTG2,
a direct downstream target of miR-34b, was upregulated in
asthma and promoted asthma progression. Further investi-
gation should focus on whether available EZH2 inhibitors
are effective in the treatment of asthma.
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sonable request.
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