Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Monomeric C reactive protein (mCRP) regulates inflammatory responses in human and mouse chondrocytes

Abstract

C-reactive protein (CRP) is an acute-phase protein that is used as an established biomarker to follow disease severity and progression in a plethora of inflammatory diseases. However, its pathophysiologic mechanisms of action are still poorly defined and remain elusive. CRP, in its pentameric form, exhibits weak anti-inflammatory activity. On the contrary, the monomeric isoform (mCRP) exhibits potent pro-inflammatory properties in endothelial cells, leukocytes, and platelets. So far, no data exists regarding mCRP effects in human or mouse chondrocytes. This work aimed to verify the pathophysiological relevance of mCRP in the etiology and/or progression of osteoarthritis (OA). We investigated the effects of mCRP in cultured human primary chondrocytes and in the chondrogenic ATDC5 mouse cell line. We determined mRNA and protein levels of relevant factors involved in inflammatory responses and the modulation of nitric oxide synthase type II (NOS2), an early inflammatory molecular target. We demonstrate, for the first time, that monomeric C reactive protein increases NOS2, COX2, MMP13, VCAM1, IL-6, IL-8, and LCN2 expression in human and murine chondrocytes. We also demonstrated that NF-kB is a key factor in the intracellular signaling of mCRP-driven induction of pro-inflammatory and catabolic mediators in chondrocytes. We concluded that mCRP exerts a sustained catabolic effect on human and murine chondrocytes, increasing the expression of inflammatory mediators and proteolytic enzymes, which can promote extracellular matrix (ECM) breakdown in healthy and OA cartilage. In addition, our results implicate the NF-kB signaling pathway in catabolic effects mediated by mCRP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: mCRP pro-inflammatory effect on human primary osteoarthritis chondrocytes.
Fig. 2: mCRP pro-inflammatory effect on human primary healthy chondrocytes.
Fig. 3: mCRP pro-inflammatory effect on murine chondrocyte cell line.
Fig. 4: Nf-κβ role in mCRP signaling: Nf-κβ inhibition with PDTC in murine chondrocyte cell line.

References

  1. 1.

    Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Hanada M, Takahashi M, Furuhashi H, Koyama H, Matsuyama Y. Elevated erythrocyte sedimentation rate and high-sensitivity C-reactive protein in osteoarthritis of the knee: relationship with clinical findings and radiographic severity. Ann Clin Biochem. 2016;53:548–53.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Schwedler SB, Filep JG, Galle J, Wanner C, Potempa LA. C-reactive protein: a family of proteins to regulate cardiovascular function. Am J Kidney Dis. 2006;47:212–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Francisco V, et al. Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. J Orthop Res. 2018;36:594–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sanchez-Ramirez DC et al. Elevated C-reactive protein is associated with lower increase in knee muscle strength in patients with knee osteoarthritis: A 2-year follow-up study in the Amsterdam Osteoarthritis (AMS-OA) cohort. Arthritis Res. Ther. 2014;16:R123.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Lee YC, et al. Pain sensitivity and pain reactivity in osteoarthritis. Arthritis Care Res. 2011;63:320–7.

    Google Scholar 

  7. 7.

    Punzi L, et al. Value of C reactive protein in the assessment of erosive osteoarthritis of the hand. Ann Rheum Dis. 2005;64:955–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Jin X, et al. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:703–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Lowe GDO, Pepys MB. C-reactive protein and cardiovascular disease: weighing the evidence. Curr Atheroscl Rep. 2006;8:421–8.

    CAS  Article  Google Scholar 

  10. 10.

    Lloyd-Jones DM, Liu K, Tian L, Greenland P. Narrative review: assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann Intern Med. 2006;145:35–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Sattar N, Hingorani AD. C-reactive protein and prognosis in diabetes: getting to the heart of the matter. Diabetes. 2009;58:798–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Elliott P, et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302:37–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Yousuf O, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62:397–408.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Chang YH, Hwu DW, Kao WP, Lee YJ. Benefits of rosuvastatin in cardiovascular protection remain unclear after HOPE-3. Rev Diabet Stud. 2016;13:212–4.

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Antonelli M, Kushner I. It’s time to redefine inflammation. FASEB J. 2017;31:1787–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Review Criteria for Assessment of C Reactive Protein (CRP), High Sensitivity C-Reactive Protein (hsCRP) and Cardiac C-Reactive Protein (cCRP) Assays - Guidance for Industry and FDA Staff | FDA. Accessed 5 Oct 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/review-criteria-assessment-c-reactive-protein-crp-high-sensitivity-c-reactive-protein-hscrp-and.

  17. 17.

    Kozijn AE, et al. Human C-reactive protein aggravates osteoarthritis development in mice on a high-fat diet. Osteoarthr Cartil. 2019;27:118–28.

    CAS  Article  Google Scholar 

  18. 18.

    Thiele JR, et al. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation. 2014;130:35–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Kortekangas P, Aro HT, Nevalainen TJ. Group II phospholipase a2 in synovial fluid and serum in acute arthritis. Scand J Rheumatol. 1994;23:68–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Panula HE, et al. Elevated levels of synovial fluid PLA2, stromelysin (MMP-3) and TIMP in early osteoarthrosis after tibial valgus osteotomy in young beagle dogs. Acta Orthop Scand. 1998;69:152–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Rajab IM, et al. C-reactive protein in gallbladder diseases: diagnostic and therapeutic insights. Biophys Rep. 2020;6:49–67.

    CAS  Article  Google Scholar 

  22. 22.

    Potempa LA, Yao Z-Y, Ji S-R, Filep JG, Wu Y. Solubilization and purification of recombinant modified C-reactive protein from inclusion bodies using reversible anhydride modification. Biophys Rep. 2015;1:18–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Otero M, et al. Human chondrocyte cultures as models of cartilage-specific gene regulation. Methods Mol. Biol. 2012;806:301–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Gõmez R, et al. Nitric oxide boosts TLR-4 mediated lipocalin 2 expression in chondrocytes. J Orthop Res. 2013;31:1046–52.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Otero M, et al. Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes. Life Sci. 2007;81:1452–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Santoro A, et al. Choosing the right chondrocyte cell line: focus on nitric oxide. J. Orthop. Res. 2015;33:1784–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Scotece M, et al. Oleocanthal inhibits catabolic and inflammatory mediators in LPS-activated human primary osteoarthritis (OA) chondrocytes through MAPKs/NF-κB pathways. Cell Physiol Biochem. 2018;49:2414–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Lago R, et al. A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthr Cartil. 2008;16:1101–9.

    CAS  Article  Google Scholar 

  29. 29.

    Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Investig. 2001;107:135–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Satriano J, Schlondorff D. Activation and attenuation of transcription factor NF-kB in mouse glomerular mesangial cells in response to tumor necrosis factor-α, immunoglobulin G, and adenosine 3’:5’-cyclic monophosphate. Evidence for involvement of reactive oxygen species. J Clin Investig. 1994;94:1629–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: conformational changes affect function. Biol Chem. 2015;396:1181–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Thiele JR, et al. Targeting C-reactive protein in inflammatory disease by preventing conformational changes. Mediators Inflamm. 2015;2015:9.

    Article  CAS  Google Scholar 

  33. 33.

    Khreiss T, et al. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. J Biol Chem. 2002;277:40775–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Jia Z-K, Li H-Y, Liang Y-L, Potempa LA, Ji S-R, Wu Y. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-κB ligand-induced osteoclast differentiation. Front Immunol. 2018;9:234.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Slevin M, Krupinski J. A role for monomeric c-reactive protein in regulation of angiogenesis, endothelial cell inflammation and thrombus formation in cardiovascular/cerebrovascular disease? Histol Histopathol. 2009;24:1473–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    El Kebir D, et al. C-reactive protein-derived peptide 201-206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32. J Leukoc Biol. 2011;90:1167–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ji S-R, et al. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. FASEB J. 2009;23:1806–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann N. Y. Acad Sci. 2010;1211:37–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Francisco V, et al. Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochem Pharmacol. 2019;165:196–206.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Abella V, et al. Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res. 2014;2014:343746.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Khreiss T, József L, Potempa LA, Filep JG. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation. 2004;109:2016–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Khreiss T, József L, Potempa LA, Filep JG. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ. Res. 2005;97:690–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Wang Q, et al. Effect of C-reactive protein on gene expression in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2005;288:H1539–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    De Lorgeril M, et al. Cholesterol lowering, cardiovascular diseases, and the rosuvastatin-JUPITER controversy: a critical reappraisal. Arch Intern Med. 2010;170:1032–6.

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Ji SR, Wu Y, Potempa LA, Liang YH, Zhao J. Effect of modified C-reactive protein on complement activation: a possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2006;26:934–41.

    Article  CAS  Google Scholar 

  46. 46.

    Ji S, et al. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP m. FASEB J. 2007;21:284–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Ji SR, Wu Y, Potempa LA, Qiu Q, Zhao J. Interactions of C-reactive protein with low-density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. Int J Biochem Cell Biol. 2006;38:648–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Ullah N, et al. Monomeric C-reactive protein regulates fibronectin mediated monocyte adhesion. Mol Immunol. 2020;117:122–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Boras E, et al. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine. 2014;69:165–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Boras E, Slevin M, Gilmore W, Potempa LA, Matou-Nasri S. Common angiogenic signaling pathways induced by monomeric C-reactive protein and FGF-2 through MAPK and PI3K. Eur J Exp Biol. 2017;7:18.

    Google Scholar 

Download references

Acknowledgements

OG and FL are Staff Personnel (I3SNS stable Researcher) of Xunta de Galicia (Servizo Galego de Saude, SERGAS) through a research-staff contract (ISCIII/SERGAS). VF is currently a “Sara Borrell” Researcher funded by ISCIII and FEDER (CD16/00111). RG and JC are “Miguel Servet” Researchers funded by Instituto de Salud Carlos III (ISCIII) and FEDER. CRF is a pre-doctoral research scholar funded by ISCIII and FEDER (Exp.18/00188). OG, MAGG, and RG are members of RETICS Programme, RD16/0012/0014 (RIER: Red de Investigación en Inflamación y Enfermedades Reumáticas) via Instituto de Salud Carlos III (ISCIII) and FEDER. FL is a member of CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares). The work of OG and JP (PI17/00409), RG (PI16/01870) and FL (PI18/00821 and CB16/11/00226) was funded by Instituto de Salud Carlos III and FEDER. OG is a beneficiary of a project funded by Research Executive Agency of the European Union in the framework of MSCA-RISE Action of the H2020 Programme (Project number 734899). OG is beneficiary of a grant funded by Xunta de Galicia, Consellería de Educación, Universidade e Formación Profesional and Consellería de Economía, Emprego e Industria (GAIN), GPC IN607B2019/10.

Funding

The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

CRF, MG, and VF participated in acquisition of data, analysis, and interpretation of data and critical revision of the manuscript. AM, RG, JC, FL, JP, MAGG, and AM participated in the acquisition of data and samples, drafting of the manuscript, and statistical analysis. IMR participated in C-rmCRP preparation and editing the manuscript. LAP participated in the analysis and interpretation of data and drafting/editing the manuscript. OG participated in the conception and design of the study, in the analysis and interpretation of data, critical revision of the manuscript, and scientific supervision of experiments.

Corresponding author

Correspondence to Oreste Gualillo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Fernández, C., Gonzalez-Rodríguez, M., Francisco, V. et al. Monomeric C reactive protein (mCRP) regulates inflammatory responses in human and mouse chondrocytes. Lab Invest (2021). https://doi.org/10.1038/s41374-021-00584-8

Download citation

Search

Quick links