Characterization of pathological thyroid tissue using polarization-sensitive second harmonic generation microscopy

Abstract

Polarization-sensitive second harmonic generation (SHG) microscopy is an established imaging technique able to provide information related to specific molecular structures including collagen. In this investigation, polarization-sensitive SHG microscopy was used to investigate changes in the collagen ultrastructure between histopathology slides of normal and diseased human thyroid tissues including follicular nodular disease, Grave’s disease, follicular variant of papillary thyroid carcinoma, classical papillary thyroid carcinoma, insular or poorly differentiated carcinoma, and anaplastic or undifferentiated carcinoma ex vivo. The second-order nonlinear optical susceptibility tensor component ratios, χ(2)zzz′/χ(2)zxx′ and χ(2)xyz′/χ(2)zxx′, were obtained, where χ(2)zzz′/χ(2)zxx′ is a structural parameter and χ(2)xyz′/χ(2)zxx′ is a measure of the chirality of the collagen fibers. Furthermore, the degree of linear polarization (DOLP) of the SHG signal was measured. A statistically significant increase in χ(2)zzz′/χ(2)zxx′ values for all the diseased tissues except insular carcinoma and a statistically significant decrease in DOLP for all the diseased tissues were observed compared to normal thyroid. This finding indicates a higher ultrastructural disorder in diseased collagen and provides an innovative approach to discriminate between normal and diseased thyroid tissues that is complementary to standard histopathology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A schematic of the nonlinear optical microscope.
Fig. 2: PIPO SHG microscopy of normal and different pathological thyroid tissues.

References

  1. 1.

    American Cancer Society. Cancer facts & figures. Atlanta: American Cancer Society; 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf.

  2. 2.

    Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer. 1998;83:2638–48.

    CAS  PubMed  Google Scholar 

  3. 3.

    LiVolsi VA, Asa SL. The demise of follicular carcinoma of the thyroid gland. Thyroid. 1994;4:233–6.

    CAS  PubMed  Google Scholar 

  4. 4.

    Schmidbauer B, Menhart K, Hellwig D, Grosse J. Differentiated thyroid cancer—treatment: state of the art. Int J Mol Sci. 2017;18:1292.

    PubMed Central  Google Scholar 

  5. 5.

    Justin EP, Seabold JE, Robinson RA, Walker WP, Gurll NJ, Hawes DR. Insular carcinoma: a distant thyroid carcinoma with associated iodine-131 localization. J Nucl Med. 1991;32:1358–63.

    CAS  PubMed  Google Scholar 

  6. 6.

    American Thyroid Association. Anaplastic thyroid cancer. Falls Church: American Thyroid Association; 2017. https://www.thyroid.org/wp-content/uploads/patients/brochures/anaplastic-thyroid-cancer-brochure.pdf.

  7. 7.

    Kazaure HS, Roman SA, Sosa JA. Insular thyroid cancer a population-level analysis of patient characteristics and predictors of survival. Cancer. 2012;118:3260–7.

    PubMed  Google Scholar 

  8. 8.

    Lam K, Lo C, Chan K, Wan K. Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg. 2000;231:329–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28:1336–40.

    PubMed  Google Scholar 

  10. 10.

    Elsheikh TM, Asa SL, Chan JKC, DeLellis RA, Heffess CS, LiVolsi VA, et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol. 2008;130:736–44.

    PubMed  Google Scholar 

  11. 11.

    Hirokawa M, Carney JA, Goellner JR, DeLellis RA, Heffess CS, Katoh R, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol. 2002;26:1508–14.

    PubMed  Google Scholar 

  12. 12.

    Golaraei A, Cisek R, Krouglov S, Navab R, Niu C, Sakashita S, et al. Characterization of collagen in non-small cell lung carcinoma with second harmonic polarization microscopy. Biomed Opt Express. 2014;5:3562–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gailhouste L, Grand YL, Odin C, Guyader D, Turlin B, Ezan F, et al. Fibrillar collagen scoring by second harmonic microscopy: A new tool in the assessment of liver fibrosis. J Hepatol. 2010;52:398–406.

    CAS  PubMed  Google Scholar 

  14. 14.

    Liu F, Chen L, Rao HY, Teng X, Ren YY, Lu YQ, et al. Automated evaluation of liver fibrosis in thioacetamide, carbon tetrachloride, and bile duct ligation rodent models using second-harmonic generation/two-photon excited fluorescence microscopy. Lab Investig. 2017;97:84–92.

    CAS  PubMed  Google Scholar 

  15. 15.

    Cicchi R, Kapsokalyvas D, De Giorgi V, Maio V, Van Wiechen A, Massi D, et al. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J Biophoton. 2010;3:34–43.

    CAS  Google Scholar 

  16. 16.

    Zhuo S, Yan J, Chen G, Shi H, Zhu X, Lu J, et al. Label-free imaging of basement membranes differentiates normal, precancerous, and cancerous colonic tissues by second-harmonic generation microscopy. PLoS ONE. 2012;7:e38655.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Adur J, Pelegati VB, de Thomaz AA, Baratti MO, Andrade LALA, Carvalho HF, et al. Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer. J Biophotonic. 2014;7:37–48.

    Google Scholar 

  18. 18.

    Burke K, Smid M, Dawes RP, Timmermans MA, Salzman P, van Deurzen CHM, et al. Using second harmonic generation to predict patient outcome in solid tumors. BMC Cancer. 2015;15:929.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ling Y, Li C, Feng K, Palmer S, Appleton PL, Lang S, et al. Second harmonic generation (SHG) imaging of cancer heterogeneity in ultrasound guided biopsies of prostate in men suspected with prostate cancer. J Biophoton. 2017;10:911–8.

    CAS  Google Scholar 

  20. 20.

    Yuting L, Li C, Zhou K, Guan G, Appleton PL, Lang S, et al. Microscale characterization of prostate biopsies tissues using optical coherence elastography and second harmonic generation imaging. Lab Investig. 2018;98:380–90.

    PubMed  Google Scholar 

  21. 21.

    Hristu R, Eftimie LG, Stanciu SG, Tranca DE, Paun B, Sajin M, et al. Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms. Biomed Opt Express. 2018;9:3923–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Freund I, Deutsch M, Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J. 1986;50:693–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt. 2002;7:205–14.

    PubMed  Google Scholar 

  24. 24.

    Stoller P, Reiser KM, Celliers PM, Rubenchik AM. Polarization-modulated second harmonic generation in collagen. Biophys J. 2002;82:3330–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Stoller P, Celliers PM, Reiser KM, Rubenchik AM. Quantitative second-harmonic generation microscopy in collagen. Appl Opt. 2003;42:5209–19.

    PubMed  Google Scholar 

  26. 26.

    Williams RM, Zipfel WR, Webb WW. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J. 2005;88:1377–86.

    CAS  PubMed  Google Scholar 

  27. 27.

    Erikson A, Ortegren J, Hompland T, Davies CD, Lindgren M. Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. J Biomed Opt. 2007;12:1–10.

    Google Scholar 

  28. 28.

    Tiaho F, Recher G, Rouède D. Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Opt Express. 2007;15:12286–95.

    CAS  PubMed  Google Scholar 

  29. 29.

    Nadiarnykh O, Campagnola PJ. Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Opt Express. 2009;17:5794–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gusachenko I, Latour G, Schanne-Klein M-C. Polarization-resolved second harmonic microscopy in anisotropic thick tissues. Opt. Express. 2010;18:19339–52.

    CAS  PubMed  Google Scholar 

  31. 31.

    Su PJ, Chen WL, Chen YF, Dong CY. Determination of collagen nanostructure from second-order susceptibility tensor analysis. Biophys J. 2011;100:2053–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ambekar R, Lau T-Y, Walsh M, Bhargava R, Toussaint KC. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express. 2012;3:2021–35.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Golaraei A, Kontenis L, Cisek R, Tokarz D, Done SJ, Wilson BC, et al. Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double stokes-mueller polarimetric microscopy. Biomed Opt Express. 2016;7:4054–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Okoro C, Kelkar V, Sivaguru M, Emmadi R, Toussaint KC. Second-harmonic patterned polarization-analyzed reflection confocal microscopy of stromal collagen in benign and malignant breast tissues. Sci Rep. 2018;8:16243.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Campbell KR, Campagnola PJ. Assessing local stromal alterations in human ovarian cancer subtypes via second harmonic generation microscopy and analysis. J Biomed Opt. 2017;22:116008.

    PubMed Central  Google Scholar 

  36. 36.

    Campbell KR, Chaudhary R, Handel JM, Patankar MS, Campagnola PJ. Polarization-resolved second harmonic generation imaging of human ovarian cancer. J Biomed Opt. 2018;23:066501.

    PubMed Central  Google Scholar 

  37. 37.

    Birk JW, Tadros M, Moezardalan K, Nadyarnykh O, Forouhar F, Anderson J, et al. Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Dig Dis Sci. 2014;59:1529–34.

    PubMed  Google Scholar 

  38. 38.

    Hristu R, Stanciu SG, Tranca DE, Stanciu GA. Improved quantification of collagen anisotropy with polarization-resolved second harmonic generation microscopy. J Biophoton. 2017;10:1171–9.

    CAS  Google Scholar 

  39. 39.

    Tokarz D, Cisek R, Golaraei A, Krouglov S, Navab R, Niu C, et al. Tumor tissue characterization using polarization-sensitive second harmonic generation microscopy. Proc. SPIE. 2015;9531:95310C.

    Google Scholar 

  40. 40.

    Tokarz D, Cisek R, Joseph A, Golaraei A, Mirsanaye K, Krouglov S, et al. Characterization of pancreatic cancer tissue using multiphoton excitation fluorescence and polarization-sensitive harmonic generation microscopy. Front Oncol. 2019;9:1–10.

    Google Scholar 

  41. 41.

    Tokarz D, Cisek R, Golaraei A, Asa SL, Barzda V, Wilson BC. Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy. Biomed Opt Express. 2015;6:3475–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tuer AE, Krouglov S, Prent N, Cisek R, Sandkuijl D, Yasufuku K, et al. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. J Phys Chem B. 2011;115:12759–69.

    CAS  PubMed  Google Scholar 

  43. 43.

    Major A, Cisek R, Sandkuijl D, Barzda V. Femtosecond Yb:KGd(WO4)2laser with > 100 nJ of pulse energy. Laser Phys Lett. 2009;6:272–4.

    CAS  Google Scholar 

  44. 44.

    Greenhalgh C, Prent N, Green C, Cisek R, Major A, Stewart B, et al. Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes. Appl Opt. 2007;46:1852–9.

    PubMed  Google Scholar 

  45. 45.

    Carriles R, Schafer DN, Sheetz KE, Field JJJ, Cisek R, Barzda V, et al. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev Sci Instrum. 2009;80:10364–71.

    Google Scholar 

  46. 46.

    Tuer AE, Akens MK, Krouglov S, Sandkuijl D, Wilson BC, Whyne CM, et al. Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue. Biophys J. 2012;103:2093–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Golaraei A, Mirsanaye K, Ro Y, Krouglov S, Akens MK, Wilson BC, et al. Collagen chirality and three-dimensional orientation studied with polarimetric second-harmonic generation microscopy. J Biophoton. 2019;12:e201800241.

    Google Scholar 

  48. 48.

    Golaraei A, Kontenis L, Mirsanaye K, Krouglov S, Akens MK, Wilson BC, et al. Complex susceptibilities and chiroptical effects of collagen measured with polarimetric second-harmonic generation microscopy. Sci Rep. 2019;9:124881–12.

    Google Scholar 

  49. 49.

    Asa SL. Pathology survival guides, series 1, number 4: survival guide to endocrine pathology. Arlington: Innovative Science Press; 2020.

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2017-06923 and DGDND-2017-00099) and the Canadian Institutes of Health Research (CIHR) through a Collaborative Health Research Project (CHRP) grant (CPG-134752 and CHRPJ 462842-14). The authors thank the staff of the Advanced Optical Microscopy Facility at University Health Network for assistance with whole-slide scanning.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Danielle Tokarz or Brian C. Wilson or Virginijus Barzda.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a real or potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokarz, D., Cisek, R., Joseph, A. et al. Characterization of pathological thyroid tissue using polarization-sensitive second harmonic generation microscopy. Lab Invest (2020). https://doi.org/10.1038/s41374-020-0475-7

Download citation