Pathophysiological mechanisms underlying a rat model of triple whammy acute kidney injury

Abstract

Simultaneous administration of certain antihypertensive (renin–angiotensin system inhibitors and diuretics) and nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a renal toxicity syndrome known as “triple whammy” acute kidney injury (TW-AKI), yet poorly characterized at the pathophysiological level, as no specific experimental model exists on which to conduct preclinical research. Herein, we generated and characterized a rat model of TW-AKI (0.7 mg/kg/day trandolapril +400 mg/kg/day ibuprofen +20 mg/kg/day furosemide). Double treatments involving the NSAID caused a subclinical acute kidney injury, as they reduced glomerular filtration rate to a significant but not sufficient extent to increase Crpl concentration. Only the triple treatment generated an overt AKI with increased Crpl provided that animals were under partial water ingestion restriction. Histological examination revealed no evidence of tissue renal injury, and no proteinuria or makers of renal damage were detected in the urine. These findings, along with a normal fractional excretion of sodium and glucose, indicated that these drug combinations produce a prerenal type of AKI. In fact, blood pressure and renal blood flow were also reduced (most markedly following the triple combination), although renal dysfunction was more pronounced than expected for the corresponding pressure drop, supporting a key pathological role of the interference with renal autoregulation mechanisms. In summary, prerenal TW-AKI only occurs when volemia is challenged (i.e., by furosemide in partially water-deprived animals) under the effects of renin–angiotensin system inhibitors and NSAIDs. This model will facilitate further pathophysiological knowledge for a better diagnosis and clinical handling of this syndrome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Triple whammy induces overt AKI, whereas double and single treatments do not.
Fig. 2: Triple whammy induces a prerenal AKI: histological analysis.
Fig. 3: Triple whammy induces a prerenal AKI: urinary biochemical evidence.
Fig. 4: Blood pressure reduction does not suffice to cause triple whammy AKI.
Fig. 5: Effect of triple whammy on renal blood flow.
Fig. 6: Critical effect of partial restriction of water ingestion for triple whammy (TW) AKI.
Fig. 7: Effect of autoregulation on the relationship between blood pressure and glomerular filtration rate.

References

  1. 1.

    Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Patel P, Ordunez P, DiPette D, Escobar MC, Hassell T, Wyss F, et al. Improved blood pressure control to reduce cardiovascular disease morbidity and mortality: the standardized hypertension treatment and prevention project. J Clin Hypertens. 2016;18:1284–94.

    Google Scholar 

  3. 3.

    MacDonald TM, Williams B, Webb DJ, Morant S, Caulfield M, Cruickshank JK, et al. Combination therapy is superior to sequential monotherapy for the initial treatment of hypertension: a double-blind randomized controlled trial. J Am Heart Assoc. 2017;6:e006986.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Harirforoosh S, Jamali F. Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf. 2009;8:669–81.

    CAS  PubMed  Google Scholar 

  5. 5.

    Bacchi S, Palumbo P, Sponta A, Coppolino MF. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm Antiallergy Agents Med Chem. 2012;11:52–64.

    CAS  PubMed  Google Scholar 

  6. 6.

    Abbott FV, Fraser MI. Use and abuse of over-the-counter analgesic agents. J Psychiatry Neurosci. 1998;23:13–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Prieto-García L, Pericacho M, Sancho-Martínez SM, Sánchez Á, Martínez-Salgado C, López-Novoa JM, et al. Mechanisms of triple whammy acute kidney injury. Pharmacol Ther. 2016;167:132–45.

    PubMed  Google Scholar 

  8. 8.

    Heerdink ER, Leufkens HG, Herings RMC, Ottervanger JP, Stricker BHC, Bakker A. NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics. Arch Intern Med. 1998;158:1108–12.

    CAS  PubMed  Google Scholar 

  9. 9.

    Boyd IW, Mathew TH, Thomas MC. COX-2 inhibitors and renal failure: the triple whammy revisited. Med J Aust. 2000;173:274.

    CAS  PubMed  Google Scholar 

  10. 10.

    Thomas MC. Diuretics, ACE inhibitors and NSAIDs—the triple whammy. Med J Aust. 2000;172:184–5.

    CAS  PubMed  Google Scholar 

  11. 11.

    Murugan R, Kellum JA. Acute kidney injury: what’s the prognosis? Nat Rev Nephrol. 2011;7:209–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Siew ED, Himmelfarb J. The inexorable rise of AKI: can we bend the growth curve? J Am Soc Nephrol. 2013;24:3–5.

    PubMed  Google Scholar 

  13. 13.

    Chan L, Mehta S, Chauhan K, Poojary P, Patel S, Pawar S, et al. National trends and impact of acute kidney injury requiring hemodialysis in hospitalizations with atrial fibrillation. J Am Heart Assoc. 2016;5:e004509. pii

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Neild GH. Multi-organ renal failure in the elderly. Int Urol Nephrol. 2001;32:559–65.

    CAS  PubMed  Google Scholar 

  16. 16.

    Block CA, Schoolwerth AC. The epidemiology and outcome of acute renal failure and the impact on chronic kidney disease. Semin Dial. 2006;19:450–4.

    PubMed  Google Scholar 

  17. 17.

    Kellum JA, Hoste EAJ. Acute kidney injury: epidemiology and assessment. Scand J Clin Lab Investig. 2008;68:6–11.

    Google Scholar 

  18. 18.

    Kerr M, Bedford M, Matthews B, O’donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transplant. 2014;29:1362–8.

    PubMed  Google Scholar 

  19. 19.

    Lapi F, Azoulay L, Yin H, Nessim SJ, Suissa S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case-control study. BMJ. 2013;346:e8525.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Fournier J-P, Sommet A, Durrieu G, Poutrain JC, Lapeyre-Mestre M, Montastruc JL, et al. More on the “Triple Whammy”: antihypertensive drugs, non-steroidal anti-inflammatory agents and acute kidney injury—a case/non-case study in the French pharmacovigilance database. Ren Fail. 2014;36:1166–8.

    CAS  PubMed  Google Scholar 

  21. 21.

    Blakeman T, Harding S, O’Donoghue D. Acute kidney injury in the community: why primary care has an important role. Br J Gen Pract. 2013;63:173–4.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Schissler MM, Zaidi S, Kumar H, Deo D, Brier ME, McLeish KR. Characteristics and outcomes in community-acquired versus hospital-acquired acute kidney injury. Nephrology. 2013;18:183–7.

    PubMed  Google Scholar 

  23. 23.

    Der Mesropian PJ, Kalamaras JS, Eisele G, Phelps KR, Asif A, Mathew RO. Long-term outcomes of community-acquired versus hospital-acquired acute kidney injury: a retrospective analysis. Clin Nephrol. 2014;81:174–84.

    Google Scholar 

  24. 24.

    Wonnacott A, Meran S, Amphlett B, Talabani B, Phillips A. Epidemiology and outcomes in community-acquired versus hospital-acquired aki. Clin J Am Soc Nephrol. 2014;9:1007–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Cryer B, Barnett MA, Wagner J, Wilcox CM. Overuse and misperceptions of nonsteroidal anti-inflammatory drugs in the United States. Am J Med Sci. 2016;352:472–80.

    PubMed  Google Scholar 

  26. 26.

    Quiros Y, Ferreira L, Sancho-Martínez SM, González-Buitrago JM, López-Novoa JM, López-Hernández FJ. Sub-nephrotoxic doses of gentamicin predispose animals to developing acute kidney injury and to excrete ganglioside M2 activator protein. Kidney Int. 2010;78:1006–15.

    CAS  PubMed  Google Scholar 

  27. 27.

    Ferreira L, Quiros Y, Sancho-Martínez SM, García-Sánchez O, Raposo C, López-Novoa JM, et al. Urinary levels of regenerating islet-derived protein III β and gelsolin differentiate gentamicin from cisplatin-induced acute kidney injury in rats. Kidney Int. 2011;79:518–28.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79:33–45.

    CAS  PubMed  Google Scholar 

  29. 29.

    Quiros Y, Vicente-Vicente L, Morales AI, López-Novoa JM, López-Hernández FJ. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol Sci. 2011;119:245–56.

    CAS  PubMed  Google Scholar 

  30. 30.

    Perazella MA, Coca SG. Traditional urinary biomarkers in the assessment of hospital-acquired AKI. Clin J Am Soc Nephrol. 2012;7:167–74.

    PubMed  Google Scholar 

  31. 31.

    Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care. 2013;17:R234.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Trumper L, Monasterolo LA, Ochoa E, Elias MM. Tubular effects of acetaminophen in the isolated perfused rat kidney. Arch Toxicol. 1995;69:248–52.

    CAS  PubMed  Google Scholar 

  33. 33.

    Arndt C, Morgenstern B, Hawkins D, Wilson D, Liedtke R, Miser J. Renal function following combination chemotherapy with ifosfamide and cisplatin in patients with osteogenic sarcoma. Med Pediatr Oncol. 1999;32:93–96.

    CAS  PubMed  Google Scholar 

  34. 34.

    Frangeskou M, Lopez-Valcarcel B, Serra-Majem L. Dehydration in the elderly: a review focused on economic burden. J Nutr Health Aging. 2015;19:619–27.

    CAS  PubMed  Google Scholar 

  35. 35.

    Thomas ME, Blaine C, Dawnay A, Devonald MA, Ftouh S, Laing C, et al. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87:62–73.

    PubMed  Google Scholar 

  36. 36.

    Pfaller W, Gstraunthaler G. Nephrotoxicity testing in vitro-what we know and what we need to know. Environ Health Perspect. 1998;106 Suppl 2:559–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sharma A, Mucino MJ, Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract. 2014;127:94–100. S. Karger AG

    CAS  PubMed  Google Scholar 

  38. 38.

    Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38:1933–53.

    CAS  PubMed  Google Scholar 

  39. 39.

    Emeigh Hart SG. Assessment of renal injury in vivo. J Pharmacol Toxicol Methods. 2005;52:30–45.

    CAS  PubMed  Google Scholar 

  40. 40.

    Solomon R, Segal A. Defining acute kidney injury: what is the most appropriate metric? Nat Clin Pract Nephrol. 2008;4:208–15.

    PubMed  Google Scholar 

  41. 41.

    Ronco C, Kellum JA, Haase M. Subclinical AKI is still AKI. Crit Care. 2012;16:313.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sgouralis I, Layton AT. Theoretical assessment of renal autoregulatory mechanisms. Am J Physiol Renal Physiol. 2014;306:F1357–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Government of Spain [Instituto de Salud Carlos III (PI14/01776, DT15S/00166, PI15/01055 and PI18/00996, PI19/00588 and Retic RD016/0009/0025, REDINREN), Ministerio de Economía y Competitividad (IPT-2012-0779-010000)], FEDER funds, the Canada 150 Research Chair program and the NSERC Discovery grant program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco J. López-Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prieto-García, L., Vicente-Vicente, L., Blanco-Gozalo, V. et al. Pathophysiological mechanisms underlying a rat model of triple whammy acute kidney injury. Lab Invest (2020). https://doi.org/10.1038/s41374-020-0473-9

Download citation