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Abstract
Radiomics has potential advantages in the noninvasive histopathological and molecular diagnosis of gliomas. We aimed to
develop a novel image signature (IS)-based radiomics model to achieve multilayered preoperative diagnosis and prognostic
stratification of gliomas. Herein, we established three separate case cohorts, consisting of 655 glioma patients, and carried
out a retrospective study. Image and clinical data of three cohorts were used for training (N= 188), cross-validation (N=
411), and independent testing (N= 56) of the IS model. All tumors were segmented from magnetic resonance (MR) images
by the 3D U-net, followed by extraction of high-throughput network features, which were referred to as IS. IS was then used
to perform noninvasive histopathological diagnosis and molecular subtyping. Moreover, a new IS-based clustering method
was applied for prognostic stratification in IDH-wild-type lower-grade glioma (IDHwt LGG) and triple-negative
glioblastoma (1p19q retain/IDH wild-type/TERTp-wild-type GBM). The average accuracies of histological diagnosis and
molecular subtyping were 89.8 and 86.1% in the cross-validation cohort, while these numbers reached 83.9 and 80.4% in the
independent testing cohort. IS-based clustering method was demonstrated to successfully divide IDHwt LGG into two
subgroups with distinct median overall survival time (48.63 vs 38.27 months respectively, P= 0.023), and two subgroups in
triple-negative GBM with different median OS time (36.8 vs 18.2 months respectively, P= 0.013). Our findings
demonstrate that our novel IS-based radiomics model is an effective tool to achieve noninvasive histo-molecular
pathological diagnosis and prognostic stratification of gliomas. This IS model shows potential for future routine use in
clinical practice.

Introduction

The precise diagnosis of gliomas is essential for persona-
lized healthcare, and will contribute to the improvement of
clinical outcomes [1, 2]. Traditionally, the gold standard
is diagnosis by pathologists based on representative tumor
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areas after biopsy or surgical resection [3]. Due to the high
inter-observer variability and morphological ambiguity, it is
well recognized that histopathology provides inadequate
information for precise diagnosis and prognostication [4].
In the latest WHO criteria for brain tumors of the central
nervous system, molecular biomarkers were officially
incorporated into histopathology for glioma classification
[5]. The concept of integrated histological–molecular
diagnosis has been widely accepted worldwide and is rou-
tinely practiced in several medical centers to overcome the
deficiencies of traditional pathological diagnosis [6].
Despite technological advancements, the current diagnostic
modality only focuses on a small portion of the tumor,
which is not feasible for characterizing the entire tumor due
to the high intratumoral cellular and genetic heterogeneity.
The potential risk of inconsistencies or discordant diagnoses
will always exist if limitations between these focal-
panorama connections cannot be resolved [7, 8].

Radiomics aims to mine medical imaging data by
extracting a wide range of quantitative features [9, 10]. Based
on radiomics methods, WHO grading and several important
molecular biomarkers (IDH1/2, 1p19q) in gliomas can be
effectively predicted [11, 12]. These previous studies revealed
that high-throughput image features contain combined
information of both histopathology and genetic alterations.
Furthermore, coming from the entire tumor entity, image
features are capable of overcoming the limitations of under-
and unrepresentative tumor sampling [4].

In this study, we proposed a novel image signature (IS)
model to facilitate glioma histological and molecular diag-
nosis by an automated method. In addition, our IS model
can be used to accurately stratify patient survival outcomes
and molecular subgroups within specific glioma entities,
which cannot be clearly defined according to the current
WHO 2016 classification. It is well demonstrated in our
three proofs that our IS model shows great potential for the
precise diagnosis and prognostication of gliomas.

Materials and methods

Patient cohorts

A total of 655 patients from two hospitals between 2010
and 2017 were enrolled in this study. Overall, 599 patients
were diagnosed in Huashan Hospital and the remaining 56
cases were from Shanghai International Medical Center. We
conducted the molecular testing of glioma specimen with
our research funds, so that the patients did not need to pay
to get their molecular testing result. Informed consent for
medical data being used for scientific research was achieved
from patients. Both Huashan Hospital and Shanghai Inter-
national Medical Center are affiliated to Fudan University.

Our research was approved by the ethics committee in
Fudan University, Shanghai, China. The number of the
ethic review for our research is HIRB-2010-256-1.

The total of 655 patients were divided into three cohorts.
The first cohort, consisting of 188 patients, was used to train
deep learning networks for automatic tumor segmentation;
hence, it was named deep learning training cohort. In this
cohort, glioma cases were included as long as we held their
corresponding T1 contrast and T2Flair series of magnetic
resonance (MR) images. Once the segmentation network
training was complete, the network was used to extract the
high-throughput network features of tumors, which we refer
to as IS. The second cohort contained 411 patients for the
cross-validation of the IS-based histopathological diagnosis
and molecular subtyping and was named cross-validation
cohort. The third cohort consisted 56 patients that were used
for independent testing, and this cohort was therefore
named Independent Testing cohort. The first and second
cohorts were from Huashan Hospital, and the third cohort
was from Shanghai International Medical Center. The
inclusion criterion of cross-validation cohort and indepen-
dent testing cohort was that these cases must contain
complete imaging data together with histopathology,
molecular biomarkers (IDH1/2, 1p19q, TERTp), and clin-
ical survival follow-up used to investigate the value of the
IS model in prognosis stratification. Due to incomplete
molecular biomarkers and survival information, the data
of the first cohort, which contains MR images and
manually labeled tumors, were not suitable for subsequent
IS analysis. In our research, two neuropathologists inde-
pendently reviewed all the histology from the second and
third cohorts based on the 2008 WHO criteria. The patient
characteristics of deep learning training cohort, cross-
validation cohort, and Independent Testing cohort are
summarized in Table 1. Preoperative three-dimensional
preoperative navigation T1 contrast and T2-FLAIR ima-
ges were obtained for subsequent research. The imaging
parameters, image preprocessing, and molecular testing
are described in Appendix Text S1.

Method overview

A deep learning network (3D U-net) was trained to segment
the tumors automatically. Once a tumor is accurately seg-
mented, most image features of the tumor will have been
stored in the deep learning network. By extracting network
features from the 3D U-net, comprehensive image features of
the tumor can be obtained. Deep learning training cohort was
used to train and validate the 3D U-net segmentation network.
After the segmentation network had been built, every case in
the cross-validation cohort underwent the following proces-
sing steps: tumor segmentation by the established 3D U-net,
tumor feature extraction from the 3D U-net, feature dimension
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reduction and selection, and radiomics model construction.
Independent testing cohort was used to further test the
radiomics model. The method overview is illustrated in
Fig. 1a. Three lines of evidence have been provided to
demonstrate the clinical value of the IS model.

3D U-net training and validation

The structure of the 3D U-net [9] used in our study is shown
in Fig. 1b. We randomly divided the deep learning training
cohort (188 cases) into a training set (125 cases) and

validation set (63 cases) in a 2:1 ratio. The tumors in the
training set were manually outlined by two experienced
neurosurgeons. The manual segmentation results were used
as the ground truth for the 3D U-net training. The MR
images of all cases from the deep learning training cohort
were skull-stripped and normalized before the training
process. In the training process, to obtain the training input
of 3D U-net, we randomly extracted 32 × 32 × 32 patches
from 125 cases in the training set. We selected 80 patches in
the ratio of 10% background, 40% normal brain and 50%
tumor from each case, thereby acquiring 10,000 patches,

Table 1 Patient characteristics
of the dataset from deep learning
training cohort, cross-validation
cohort, and independent testing
cohort.

Deep learning
training cohort

Cross-
validation cohort

Independent
testing cohort

(N= 188) (N= 411) (N= 56) P valuea

Clinical characteristics

Sex—no. (%) (N= 188) (N= 410) (N= 55) 0.010b

Male 108 (57.4) 223 (54.4) 40 (72.7)

Female 80 (42.6) 187 (45.6) 15 (27.3)

Age—year (%) (N= 188) (N= 411) (N= 55) 0.319

<18 4 (2.1) 4 (1.0) 2 (3.6)

18–36 55 (29.3) 126 (30.8) 21 (38.2)

37–60 97 (51.6) 240 (58.3) 27 (49.1)

>60 32 (17.0) 41 (9.9) 5 (9.1)

Imaging characteristics

Tumor location—no. (%) (N= 188) (N= 411) (N= 56) 0.769

Frontal lobe (F) 88 (46.8) 194 (47.2) 28 (50.0)

Temporal lobe (T) 39 (20.7) 95 (23.1) 15 (26.8)

Parietal lobe (P) 20 (10.6) 80 (19.5) 9 (16.1)

Others 41 (21.8) 42 (10.2) 4 (7.1)

WHO grading—no. (%) (N= 188) (N= 403) (N= 56) 0.835

II 56 (29.8) 240 (59.6) 31 (55.4)

III 59 (31.4) 97 (24.1) 15 (26.8)

IV 73 (38.8) 66 (16.4) 10 (17.9)

IDH status—no. (%) (N= 411) (N= 56) 0.567

Mutation 244 (59.4) 31 (55.4)

Wild type 167 (40.6) 25 (44.6)

1p19q status—no. (%) (N= 350) (N= 49) 0.197

Codeletion 124 (35.4) 22 (44.9)

Retain 226 (64.6) 27 (55.1)

TERTp status—no. (%) (N= 365) (N= 55) 0.181

Mutation 161 (44.1) 19 (34.5)

Wild type 204 (55.9) 36 (65.5)

Pathology classification—
no. (%)

(N= 403) (N= 56) 0.815

Astrocytoma 234 (58.1) 30 (53.6)

Oligodendroglioma 103 (25.6) 16 (28.5)

GBM 66 (16.4) 10 (17.9)

aP values are for the comparison between datasets of Independent Cohort and cross-validation cohort. Values
were calculated with the use of the chi-square test.
bStatistical significance.
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Fig. 1 The overview of the method. a Patients cohorts and flowchart of the method. b Structure of the 3D U-net. c Feature reduction and selection
process.
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with their corresponding manually segmented labels utilized
as the training data for 3D U-net.

In the validation process, we utilized asymmetry detec-
tion and a 3D bounding box method proposed in our pre-
vious work [13] to obtain the tumor region of interest (ROI).
Then, we put the ROI into the trained 3D U-net to obtain
element-wise segmentation results.

3D U-net architecture

Our network architecture combines a down-sampling path and
an up-sampling path with a concatenation of feature maps at
corresponding resolution scales, as shown in Fig. 1b. The path
has three blocks and two convolutional layers. Each block
includes two consecutive convolutional layers with a filter size
of 3 × 3 × 3 and a max pooling layer with a stride of 2 × 2 × 2.
By the end of down-sampling path, two consecutive con-
volutional layers with a filter size of 3 × 3 × 3 are added, with
the last layer being the “bottom layer,” where features that are
the most representative are integrated. Then, the up-sampling
path follows, which also has three blocks. Each of the blocks
contains a deconvolution layer with a filter size of 2 × 2 × 2, a
concatenation process and two consecutive convolutional
layers with a filter size of 3 × 3 × 3. At the end of the network,
we implemented a fully connected layer and a softmax
function to create an element-wise segmentation structure. In
the 3D U-net architecture, we use zero padding in all the
convolutional layers to keep the output scales. In addition, the
activation function is selected to be rectified linear unit.

In the postprocessing procedure of the segmentation test
set, we developed a simple double-scale detection algorithm
that combines the tumor bounding details from the 240 ×
240 × 32 patch segmentation results and the environmental
details from the 320 × 320 × 32 patch segmentation results by
calculating their intersection. Then, we restored the segmen-
tation result to its original scale by using the center location
information saved previously. Finally, we utilized the largest
3D connection region algorithm to obtain the final automatic
glioma segmentation result of each case in the validation set.

Image signature (IS) extraction

Network features were initially extracted from the bottom
layer and are highlighted in Fig. 1b. The down-sampling path
can also be interpreted as the encoding path, such that the end
of the down-sampling path is therefore the best choice for
extracting network features. The dimension of the extracted
network features (IS) was 40 × 40 × 4 × 256= 1,638,400.

Details of the diagnostic modeling

Three-step feature selection was used in our histological and
molecular subtype prediction. First, Fisher vector clustering

was applied to concentrate the large-scale network features;
then, a t test with a P threshold value of 0.05 was used to
remove statistically insignificant features; finally, sparse
representations were used to select the best feature combi-
nation for a particular discrimination. To reduce the
dimensionality of network features for subsequent analysis,
improved Fisher vector encoding [14, 15] was used in our
study. The network feature of each tumor was first stretched
into a one-dimensional vector, which was then entered
into 128 deep filters. For each deep filter, the first- and
second-order statistics of Gaussian mixture models with 64
Gaussian components were calculated. The Fisher vector
encoding leads to 128 × 64 × 2= 16,384 features for each
tumor, which is described in Appendix Text S2. Then, a t
test with a significance threshold set at P= 0.05 was used to
select features with statistical significance. After P value
selection, the feature dimension was reduced to the range of
1000–3500 for different classification problems. Finally, an
improved version of sparse representation [16–18] was
used to find the optimal feature combination for different
classification problems. After a feature combination was
selected, sparse representation classification was used to
build the radiomics models. The feature selection and
classification based on sparse representation is described in
Appendix Text S3.

Three radiomics proofs

(1) Noninvasive histopathological diagnosis and molecular
subtyping based on IS

IS contains most of the tumor features. However, its direct
usage in histological diagnosis and molecular subtyping will
lead to overfitting due to its high dimensionality. A three-step
feature reduction and selection strategy, as shown in Fig. 1c,
was used to establish the diagnostic model. The details of the
diagnostic modeling are provided in the previous section.
A two-layer binary classification model was used to perform
histopathological diagnosis. A three-layer binary classification
model was used to determine molecular subtypes. The two
binary classification trees are illustrated in Fig. 2.

(2) Stratification of patient survival outcomes in IDH1/2
wild-type lower-grade glioma (LGG, WHO grade II and III)

In our previous publication, we defined molecular higher-
grade glioma, which has poor survival outcomes, such as
IDH-wild-type glioblastoma (IDHwt GBM), and molecular
lower-grade glioma, which has a good prognosis (GP), such
as IDH-mutant LGG (IDHmut LGG) [19]. Thus, we used
our IS model to perform prognostic stratification of IDH-
wild-type LGG by using IDHwt GBM and IDHmut LGG as
two reference groups.
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First, the IS clustering centers of the two reference
groups were calculated, and then each case in the IDH-wild-
type LGG group was divided according to the L1-norm

into one of the two cluster centers. In other words, if the
IS of a case is closer to the cluster center of IDHmut LGG,
it was regarded as clinically prone to IDHmut LGG,

Fig. 2 Illustration of binary
classifiers. a Binary
classification for histologic type
prediction, b classification
performances of two binary
classifiers, c binary classification
for molecular group prediction,
d classification performances of
four binary classifiers.
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otherwise it was labeled as IDHwt GBM. Finally, the
prognosis of IDH-wild-type LGG patients was analyzed
according to the IS classification. This process is illustrated
in Fig. 3a.

(3) Stratification of patient survival outcomes in triple-
negative glioblastoma (GBM, WHO grade IV)

Triple-negative (IDH-wild-type/TERTp-wild-type/1p19q
retain) glioblastoma, accounting for ~20% of IDH-wild-
type GBM, represents explicit genetic alterations and a
relevant median overall survival (mOS) time [20, 21]. We
used our IS model to test whether the prognosis of patients
with triple-negative glioblastoma could be stratified.

Therefore, IDH-wild-type anaplastic astrocytoma (IDHwt
AA) and IDH-wild-type/TERTp mutation glioblastoma
(IDHwt/TERTpmut GBM) were adopted as two reference
groups (IDHwt AA for GP, IDHwt/TERTpmut GBM for
poor prognosis). Triple-negative GBM cases were reclas-
sified according to the L1-norm between itself and the
IDHwt AA or IDHwt/TERTpmut GBM cluster centers.
This process is illustrated in Fig. 4a.

Statistical analysis

For the noninvasive diagnosis of histopathology and
molecular subtypes, fivefold cross-validation and indepen-
dent testing were used. The performance of noninvasive

Fig. 3 Illustration of prognostic stratification of IDH1/2 wild-type LGG. a IS clustering process. b Prognosis stratification based on IS
clustering. c Heatmap of IS clustering.
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diagnosis was validated by the following quantitative
indexes: accuracy, Sensitivity, Specificity, Positive-
Predictive Value (PPV), Negative-Predictive Value, and
Matthew’s Correlation Coefficient, which are described in
Appendix Text S4.

The chi-squared test was used to determine statistical
difference of clinical characteristics between the three
cohorts. Univariate and multivariate Cox proportional
hazards models were applied to evaluate associations
between overall survival outcomes and characteristics.
Kaplan–Meier curves and the log-rank test were used to
estimate the mOS for different histopathological subgroups,
molecular subgroups, and IS-based stratified groups.
MATLAB 2017 (MathWorks, USA), IBM SPSS statistics
20.0 software (SPSS, Chicago, IL, USA), and R 3.5.1 were
used to perform the statistical analysis.

Results

Image segmentation

The image segmentation of the deep learning network (3D
U-net) was evaluated by several quantitative indexes,
including Dice’s coefficient, PPV and SEN. Definitions of
the evaluation indexes are provided in Appendix Text S5.
An example of glioma segmentation is illustrated in Fig. S1.
The segmentation results are summarized in Table S1.

Noninvasive histopathological diagnosis and
molecular subtyping based on IS

The average accuracy values of histological diagnosis and
molecular subtyping were 89.8% and 86.1%, respectively,

Fig. 4 Illustration of prognostic stratification of triple-negative GBM. a IS clustering process. b Prognosis stratification based on IS clustering.
c Heatmap of IS clustering.
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in the cross-validation cohort, while these numbers reached
83.9% and 80.4% in the independent testing cohort. The
classification accuracy of each separate binary classifier
exceeded 89.2% in the cross-validation cohort. Figure 2
shows all the specific classification results in all tasks. The
accuracies of the noninvasive histopathological diagnosis
of oligodendroglioma, astrocytoma and glioblastoma are
summarized in Fig. 2a, and the classification performance
outcomes of the two binary classifiers are shown in Fig. 2b.
Meanwhile, molecular subtyping was achieved by assessing
the status of IDH1/2 and 1p19q according to the genetic
parameters of the 2016 WHO criteria: LGG with IDH1/2
mutant and 1p19q codeletion, LGG with IDH1/2 mutant
and 1p19q retained, LGG with IDH1/2 wild type, GBM
with IDH1/2 mutant, and GBM with IDH1/2 wild type. The
binary classification in molecular subtyping is summarized
in Fig. 2c, and the classification performance outcomes of
the four binary classifiers are shown in Fig. 2d.

Prognostic stratification of IDH1/2 wild-type LGG
based on IS

Several high-profile publications, including our previous
paper, identified the genetic heterogeneity of IDH1/2 wild-
type LGG with relevant prognosis [19, 22, 23]. EGFR
amplification, whole +7/−10 and TERTp mutation serve as
hallmarks for IDH1/2 wild-type LGG prognostic stratifica-
tion. The prognosis of patients harboring EGFR amplifica-
tion, whole +7/−10 or TERTp mutation is similar to that of
patients with IDH-wild type GBM; none of the above three
genetic alterations indicate a GP, similar to IDHmut LGG
[24]. In our study cohort, the mOS times of IDHmut LGG
and IDHwt GBM were 63.87 and 18.50 months, respec-
tively. By using IS clustering analysis in line with two
reference groups, all IDH1/2 wild-type LGG cases could be
separated into two groups called Group A and Group B,
shown as GP group and bad prognosis (BP) group in
Fig. 3b. Group A patients had better survival time than
Group B patients (48.63 vs 38.27 months, P= 0.023). The
imaging features presented obvious differences between
Group A and Group B in the clustering heatmap shown in
Fig. 3c. Meanwhile, continuous age was used to calculated
the age-adjusted survival curves. The result, as shown in
Fig. S2, showed that IS significantly associated with overall
survival in IDH wild-type LGG. The clinical differences
between the two groups are statistically insignificant, as
shown in Table 2.

Prognostic stratification of triple-negative GBM
based on IS

As the other two reference groups, the mOS times for
IDHwt AA and IDHwt/TERTpmut GBM were 33.3 and

17.6 months, respectively. By utilizing the same IS clus-
tering method, triple-negative GBM cases could be strati-
fied into Group C and Group D, shown as GP group and BP
group in Fig. 4b. Group C patients had longer mOS times
than Group D patients (36.8 vs 18.2 months, P= 0.013). In
the multivariate analysis, IS was identified as an indepen-
dent prognostic factor, as shown in Tables 3 and 4. The IS
analysis process of the triple-negative GBM is illustrated in
Fig. 4.

Discussion

Preoperative diagnosis and potential risk evaluation have
become increasingly important in individualized glioma
patient healthcare [1, 2]. In the present study, we devel-
oped a novel radiomics model named IS to perform
noninvasive histopathological diagnosis and molecular

Table 2 Patient characteristics of IDH wild-type LGG.

Group A Group B

(N= 41) (N= 50) P value

Clinical characteristics

Sex—no. (%)

Male 26 (63.4%) 32 (64.0%) 0.954a

Female 15 (36.6%) 18 (36.0%)

Age—year (SD) 44.2 ± 12.0 46.1 ± 13.6 0.273b

Survival—months (SD) 26.2 ± 13.8 23.4 ± 13.7 0.962b

Imaging characteristics

Tumor location—no. (%) (N= 41) (N= 50) 0.14a

Frontal 27 (65.9%) 28 (56.0%)

Parietal 2 (4.9%) 11 (22.0%)

Temporal 9 (11%) 8 (16.0%)

Others 3 (7.3%) 3 (6.0%)

Histopathological diagnosis—
no. (%)

(N= 40) (N= 50) 1.000a

Astrocytoma 32 (80.0%) 40 (80%)

Oligodendroglioma 8 (20.0%) 10 (20%)

WHO grading—no. (%) (N= 39) (N= 50) 0.926a

II 23 (59.0%) 29 (58.0%)

III 16 (41.0%) 21 (42.0%)

TERT status—no. (%) (N= 39) (N= 45) 0.579a

Mutation 15 (38.5%) 20 (44.4%)

Wild type 24 (61.5%) 25 (55.6%)

1p19q status—no. (%) (N= 40) (N= 48) 0.338a

Codeletion 9 (22.5%) 7 (14.6%)

Retain 31 (77.5%) 41 (85.4%)

aP values are for the comparison between two groups. Values were
calculated with the use of the chi-square test.
bValues were calculated with the use of the t test.

458 H. Luo et al.



subtyping of glioma and to further explore the hetero-
geneity of the clinical course. In existing radiomics
methods, image features are extracted from MR images
based on explicit experiences in image processing, image
pattern characteristics, and signal processing. Such
methods can hardly guarantee the completeness of the
extraction of information from MR images. In the current
literature, deep learning-based radiomics outperformed
normal radiomics in the prediction of IDH1 using T2-
FLAIR MR images in Li’s method [25], suggesting that
deep learning-based radiomics is better capable of
extracting complete information and features from MR
images. Our IS model also utilized a deep learning net-
work to extract image features. Different from existing
radiomics methods that explicitly extract image features

from MR images, the image features in our research were
derived from the image segmentation deep learning net-
work. When the network can accurately perform glioma
segmentation, the completeness of the extracted features
is assured.

Intratumoral heterogeneity has always posed challenges
to prognostication and treatment for glioma patients
[8, 26]. We applied IS to designate an accurate and
reproducible image clustering strategy to stratify glioma
patients into different subtypes with distinct survival times
that are not clearly defined in the current diagnostic
scheme. To validate the efficacy of this strategy, we
selected IDH-wild-type LGG and triple-negative GBM as
two representatives because the clinical definition of these
two glioma phenotypes is still unclear in the current cri-
teria [5]. IDH-wild-type LGG can be referred to as “diffuse
astrocytic glioma, IDH-wild-type, with molecular features
of glioblastoma, WHO IV” if the tumor harbors either
EGFR amplification, whole +7/−10 or TERTp mutation,
with an aggressive clinical course corresponding to
IDHwt/TERTpmut GBM [24]. The absence of these three
molecular biomarkers indicates that the survival outcomes
of IDH-wild-type LGG will be similar to those of IDHmut
LGG [27]. This was the theoretical basis on which we
developed our strategy of IS clustering reference groups
for IDH-wild-type LGG.

Besides, we observed one interesting situation by using
our IS stratification system. In Group A, there was a trend
toward two potential subgroups based on IS clustering. We
speculated if there still existed a specific glioma subtype
within IDH wild-type gliomas. At first step, we worked on
survival analysis of these two potential IS subgroups (called
Group A-1 and Group A-2). It was indicated that Group A-2
patients had better overall survival outcome than that of
Group A-1 patient, as shown in Fig. 5. However, there
was no statistical significance of such survival diversity.

Table 3 Univariate and
multivariate Cox regression
analysis for triple-
negative GBM.

Univariate analysis Multivariate analysis

Factors Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

All patient (N= 33)

Male vs female sex 1.327 (0.493–3.571) 0.576 1.454 (0.396–5.330) 0.573

Age, modeled as a continuous
variable

1.002 (0.973–1.032) 0.872 1.010 (0.976–1.045) 0.566

Tumor position

Frontal lobe 1.033 (0.213–5.002) 0.968 0.824 (0.159–4.273) 0.818

Temporal lobe 1.879 (0.161–21.931) 0.615 1.262 (0.078–20.534) 0.870

Parietal lobe 1.598 (0.335–7.613) 0.556 1.015 (0.396–5.502) 0.986

Other lobe 1 [reference] 1 [reference]

Image signature GP vs BP 3.807 (1.233–11.752) 0.020a 4.471 (1.239–16.140) 0.022a

GP good prognosis, BP bad prognosis.
aStatistical significance.

Table 4 Patient characteristics of triple-negative GBM.

Group C Group D

(N= 14) (N= 19) P value

Clinical characteristics

Sex—no. (%) (N= 14) (N= 19)

Male 7 (50.0%) 14 (73.7%) 0.162a

Female 7 (50.0%) 5 (26.3%)

Age—year (SD) 52.8 ± 14.7 40.8 ± 20.1 0.096b

Survival—months (SD) 23.8 ± 11.6 18.0 ± 11.4 0.828b

Imaging characteristics

Tumor Location—no. (%) (N= 14) (N= 19) 0.336a

Frontal 7 (50.0%) 8 (42.1%)

Parietal 1 (7.1%) 1 (5.3%)

Temporal 3 (21.4%) 9 (47.4%)

Others 3 (21.4%) 1 (5.3%)

aP values are for the comparison between two groups. Values were
calculated with the use of the chi-square test.
bValues were calculated with the use of the t test.

A novel image signature-based radiomics method to achieve precise diagnosis and prognostic. . . 459



Furthermore, we performed multivariate statistical analysis
for Group A-1 and A-2 cases, more A-2 tumors were found
located in frontal lobe compared to A-1 tumors, as shown in
Table 5. In many previous research reports, tumor location
was one of important factors determining patients outcome
[28, 29], for example, frontal lobe tumors tend to be good
clinical performance, whilst midline tumors being dismal
outcome. Such finding may explain why A-2 patients had
optimal survival time than A-1 patients did. To our
acknowledge, IDH-mutant gliomas preferred to be located
in frontal lobe, so we hypothesized that A-2 tumors may
have more familiar genetic background with IDH-mutant
lower-grade gliomas, and our IS clustering method was
capable of revealing this kind of genetic features.

Triple-negative gliomas are enigmatic tumors with
highly heterogeneous backgrounds [30]. Cahill et al.
reported the enrichment of BAF complex alterations and
activating mutations in genes within the PI3K pathway in
IDHwt/TERTpwt GBM. The prognosis for this kind of
tumor is better than that of TERTpmut GBM but worse than
that of IDHmut GBM [21]. Ichimura et al. also reported the
same result and suggested the prognostic value of TERTp
mutation, which was impacted by various factors, such as
MGMT methylation status [31]. This result demonstrated
survival stratification. Hai Yan et al. reported the genomic
landscape of triple-negative GBM with two distinct sub-
types, namely, IDHwt-ALT and IDHwt-TERTsv [20]. The
IDHwt-ALT subtype showed frequent mutations in ATRX
and SMARCAL1, similar to TERTpmut GBM in overall
survival time. The IDHwt-TERTsv subtype is characterized
as activating upstream rearrangement of TERTp with better
prognosis than the ALT subtype but inferior prognosis to
IDHmut GBM. Therefore, we chose TERTpmut GBM as
one of the reference groups for triple-negative GBM. On the
other hand, we chose IDHwt AA rather than IDH-mutant

GBM as another reference group because IDH-mutant
GBM shared a totally different pathogenesis with IDH-
wild-type astrocytic glioma. Several articles demonstrated
that IDHwt AA is the early developing stage for diffuse
glioma evolving into IDH-wild-type GBM, presenting with
worse OS than IDH-mutant GBM [22, 32]. This was
another theoretical basis for our IS clustering strategy in
triple-negative GBM.

There were several limitations in this study. First, this
was a retrospective study from only two neurosurgical
institutions. Second, we did not perform comprehensive
genomic screening of these two representative glioma
phenotypes. However, this study provides a novel
radiomics-based IS model and clustering strategy for pre-
cise noninvasive diagnosis and prognostication and is more
adherent to real clinical situations with great potential for
future implementation in routine clinical practice.

Fig. 5 Survival analysis of Group A-1 and Group A-2. Group A-1 is
shown in dotted line and A-2 in solid line.

Table 5 Patient characteristics of Group A-1 and Group A-2.

Group A-1 Group A-2

(N= 13) (N= 28) P value

Clinical characteristics

Sex—no. (%)

Male 6 (46.2%) 20 (71.4%) 0.118a

Female 7 (53.8%) 8 (28.6%)

Age—year (SD) 42.5 ± 14.3 45.1 ± 10.9 0.525b

Survival—months (SD) 27.3 ± 15.2 25.6 ± 13.4 0.772b

Imaging characteristics

Tumor location—no. (%) (N= 13) (N= 28) 0.022a,c

Frontal 5 (38.5%) 22 (78.6%)

Parietal 1 (7.7%) 1 (3.6%)

Temporal 4 (30.8%) 5 (17.9%)

Others 3 (23.1%) 0 (0.0%)

Histopathological diagnosis—
no. (%)

(N= 12) (N= 28) 0.730a

Astrocytoma 10 (83.3%) 22 (78.6%)

Oligodendroglioma 2 (16.7%) 6 (21.4%)

WHO grading—no. (%) (N= 12) (N= 27) 0.849a

II 7 (58.3%) 16 (59.3%)

III 5 (41.7%) 11 (40.7%)

TERT status—no. (%) (N= 13) (N= 26) 1.000a

Mutation 5 (38.5%) 10 (38.5%)

Wild type 8 (61.5%) 16 (61.5%)

1p19q status—no. (%) (N= 12) (N= 28) 0.563a

Codeletion 9 (16.7%) 7 (25.0%)

Retain 31 (83.3%) 41 (75.0%)

aP values are for the comparison between two groups. Values were
calculated with the use of the chi-square test.
bValues were calculated with the use of the t test.
cStatistically significant.
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