Lack of genetic homozygosity in prepubertal teratomas: divergent pathogenesis distinct from that of teratomas in adolescents


In adults, both immature and mature ovarian teratomas show frequent genetic homozygosity consistent with tumorigenesis involving germ cells after meiosis I. Investigation into genetic zygosity of various teratomas in children has been limited. Thirteen sacrococcygeal, 12 ovarian, and 3 testicular teratomas in children 18 years or younger were retrieved from our departmental archives and histologically reviewed. Tumor and paired normal tissues were microdissected and subjected to short tandem repeat (STR) genotyping. DNA genotyping was informative in 12 sacrococcygeal teratomas, 8 ovarian teratomas, and 3 testicular teratomas. Sacrococcygeal teratomas included seven mature teratomas, four immature teratomas, and one mixed germ cell tumor with patient age ranging from 0 days to 3 years. All but two patients were female. Ovarian teratomas included five mature and three immature teratomas with patient age ranging from 2 to 18 years. Testicular teratomas included two mature teratomas and one immature teratoma with patient age ranging from 3 months to 3 years. All sacrococcygeal, testicular, and ovarian teratomas in patients younger than 4 years showed no evidence of genetic homozygosity by STR genotyping. In contrast, all four ovarian teratomas in patients older than 9 years showed either partial or complete homozygosity. In conclusion, unlike adolescent and adult ovarian teratomas, prepubertal sacrococcygeal and gonadal teratomas lack genetic homozygosity, supporting the hypothesis that teratomas before puberty develop at an early stage of germ cell development different from that of teratomas in adolescents and adults.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sacrococcygeal immature teratoma with heterozygosity in a 1-day-old female (case 3).
Fig. 2: Sacrococcygeal mixed germ cell tumor with mature teratoma and yolk sac tumor components in a 2-year-old male (case 11).
Fig. 3: Ovarian immature teratoma with partial homozygosity in an 11-year-old patient (case 18).
Fig. 4: Testicular immature teratoma with heterozygosity in a 3-month-old patient (case 21).


  1. 1.

    Emerson RE, Kao CS, Eble JN, Grignon DJ, Wang M, Zhang S, et al. Evidence of a dual histogenetic pathway of sacrococcygeal teratomas. Histopathology. 2017;70:290–300.

    Article  Google Scholar 

  2. 2.

    Hoffner L, Deka R, Chakravarti A, Surti U. Cytogenetics and origins of pediatric germ cell tumors. Cancer Genet Cytogenet. 1994;74:54–8.

    CAS  Article  Google Scholar 

  3. 3.

    Linder D. Gene loss in human teratomas. Proc Natl Acad Sci USA. 1969;63:699–704.

    CAS  Article  Google Scholar 

  4. 4.

    Linder D, Power J. Further evidence for post-meiotic origin of teratomas in the human female. Ann Hum Genet. 1970;34:21–30.

    CAS  Article  Google Scholar 

  5. 5.

    Eppig JJ, Kozak LP, Eicher EM, Stevens LC. Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature. 1977;269:517–8.

    CAS  Article  Google Scholar 

  6. 6.

    Patil SR, Kaiser-McCaw B, Hecht F, Linder D, Lovrien EW. Human benign ovarian teratomas: chromosomal and electrophoretic enzyme studies. Birth Defects Orig Artic Ser. 1978;14:297–301.

    CAS  PubMed  Google Scholar 

  7. 7.

    Surti U, Hoffner L, Chakravarti A, Ferrell RE. Genetics and biology of human ovarian teratomas. I. Cytogenetic analysis and mechanism of origin. Am J Hum Genet. 1990;47:635–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Deka R, Chakravarti A, Surti U, Hauselman E, Reefer J, Majumder PP, et al. Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene-centromere mapping of chromosome I markers. Am J Hum Genet. 1990;47:644–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Dahl N, Gustavson K-H, Rune C, Gustavsson I, Pettersson U. Benign ovarian teratomas. An analysis of their cellular origin. Cancer Genet Cytogenet. 1990;46:115–23.

    CAS  Article  Google Scholar 

  10. 10.

    Vortmeyer AO, Devouassoux-Shisheboran M, Li G, Mohr V, Tavassoli F, Zhuang Z. Microdissection-based analysis of mature ovarian teratoma. Am J Pathol. 1999;154:987–91.

    CAS  Article  Google Scholar 

  11. 11.

    Snir OL, DeJoseph M, Wong S, Buza N, Hui P. Frequent homozygosity in both mature and immature ovarian teratomas: a shared genetic basis of tumorigenesis. Mod Pathol. 2017;30:1467–75.

    CAS  Article  Google Scholar 

  12. 12.

    Ulbright TM. Gonadal teratomas: a review and speculation. Adv Anat Pathol. 2004;11:10–23.

    Article  Google Scholar 

  13. 13.

    Pierce JL, Frazier AL, Amatruda JF. Pediatric germ cell tumors: a developmental perspective. Adv Urol. 2018;2018:9059382.

    Article  Google Scholar 

  14. 14.

    Harms D, Zahn S, Gobel U, Schneider DT. Pathology and molecular biology of teratomas in childhood and adolescence. Klin Padiatr. 2006;218:296–302.

    CAS  Article  Google Scholar 

  15. 15.

    Mylonas KS, Kao CS, Levy D, Lordello L, Dal Cin P, Masiakos PT, et al. Clinicopathologic features and chromosome 12p status of pediatric sacrococcygeal teratomas: a multi-institutional analysis. Pediatr Dev Pathol. 2019;22:214–20.

    Article  Google Scholar 

  16. 16.

    Gurda GT, VandenBussche CJ, Yonescu R, Gonzalez-Roibon N, Ellis CL, Batista DA, et al. Sacrococcygeal teratomas: clinico-pathological characteristics and isochromosome 12p status. Mod Pathol. 2014;27:562–8.

    CAS  Article  Google Scholar 

  17. 17.

    Moch H, Humphrey PA, Ulbright TM, Reuter VE, editors. WHO classification of tumours of the urinary system and male genital organs. 4th ed. Lyon: International Agency for Research on Cancer; 2016. p. 189–98.

  18. 18.

    Schropp KP, Lobe TE, Rao B, Mutabagani K, Kay GA, Gilchrist BF, et al. Sacrococcygeal teratoma: the experience of four decades. J Pediatr Surg. 1992;27:1075–8. discussion 8-9

    CAS  Article  Google Scholar 

  19. 19.

    Yoshida M, Matsuoka K, Nakazawa A, Yoshida M, Inoue T, Kishimoto H, et al. Sacrococcygeal yolk sac tumor developing after teratoma: a clinicopathological study of pediatric sacrococcygeal germ cell tumors and a proposal of the pathogenesis of sacrococcygeal yolk sac tumors. J Pediatr Surg. 2013;48:776–81.

    Article  Google Scholar 

  20. 20.

    Noguera R, Navarro S, Carda C, Peydro-Olaya A, Llombart-Bosch A. Near-haploidy in a malignant sacrococcygeal teratoma. Cancer Genet Cytogenet. 1999;108:70–4.

    CAS  Article  Google Scholar 

  21. 21.

    Zhong H, Liu Y, Talmor M, Wu B, Hui P. Deparaffinization and lysis by hydrothermal pressure (pressure cooking) coupled with chaotropic salt column purification: a rapid and efficient method of DNA extraction from formalin-fixed paraffin-embedded tissue. Diagn Mol Pathol. 2013;22:52–8.

    CAS  Article  Google Scholar 

  22. 22.

    Snir OL, Buza N, Hui P. Mucinous epithelial tumours arising from ovarian mature teratomas: a tissue genotyping study. Histopathology. 2016;69:383–92.

    Article  Google Scholar 

  23. 23.

    Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017;23:706–22.

    CAS  Article  Google Scholar 

  24. 24.

    Pan B, Li J. The art of oocyte meiotic arrest regulation. Reprod Biol Endocrinol. 2019;17:8.

    Article  Google Scholar 

  25. 25.

    Linder D, McCaw BK, Hecht F. Parthenogenic origin of benign ovarian teratomas. N Engl J Med. 1975;292:63–6.

    CAS  Article  Google Scholar 

  26. 26.

    Usui H, Nakabayashi K, Kaku H, Maehara K, Hata K, Shozu M. Elucidation of the developmental mechanism of ovarian mature cystic teratomas using B allele-frequency plots of single nucleotide polymorphism array data. Genes Chromosomes Cancer. 2018;57:409–19.

    CAS  Article  Google Scholar 

  27. 27.

    Poulos C, Cheng L, Zhang S, Gersell DJ, Ulbright TM. Analysis of ovarian teratomas for isochromosome 12p: evidence supporting a dual histogenetic pathway for teratomatous elements. Mod Pathol. 2006;19:766–71.

    CAS  Article  Google Scholar 

  28. 28.

    Bussey KJ, Lawce HJ, Olson SB, Arthur DC, Kalousek DK, Krailo M, et al. Chromosome abnormalities of eighty-one pediatric germ cell tumors: sex-, age-, site-, and histopathology-related differences—a Children’s Cancer Group study. Genes Chromosomes Cancer. 1999;25:134–46.

    CAS  Article  Google Scholar 

  29. 29.

    Schneider DT, Schuster AE, Fritsch MK, Calaminus G, Göbel U, Harms D, et al. Genetic analysis of mediastinal nonseminomatous germ cell tumors in children and adolescents. Genes Chromosomes Cancer. 2002;34:115–25.

    CAS  Article  Google Scholar 

  30. 30.

    Veltman I, Veltman J, Janssen I, Hulsbergen-van de Kaa C, Oosterhuis W, Schneider D, et al. Identification of recurrent chromosomal aberrations in germ cell tumors of neonates and infants using genomewide array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2005;43:367–76.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Olivia L. Snir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Snir, O.L., DeJoseph, M., Wu, X. et al. Lack of genetic homozygosity in prepubertal teratomas: divergent pathogenesis distinct from that of teratomas in adolescents. Lab Invest 100, 1447–1454 (2020).

Download citation

Further reading


Quick links