The HNRNPA2B1–MST1R–Akt axis contributes to epithelial-to-mesenchymal transition in head and neck cancer

Abstract

The deregulation of splicing factors and alternative splicing are increasingly viewed as major contributory factors in tumorigenesis. In this study, we report overexpression of a key splicing factor, heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), and thereby misregulation of alternative splicing, which is associated with the poor prognosis of head and neck cancer (HNC). The role of HNRNPA2B1 in HNC tumorigenesis via deregulation of alternative splicing is not well understood. Here, we found that the CRISPR/Cas9-mediated knockout of HNRNPA2B1 results in inhibition of HNC cells growth via the misregulation of alternative splicing of MST1R, WWOX, and CFLAR. We investigated the mechanism of HNRNPA2B1-mediated HNC cells growth and found that HNRNPA2B1 plays an important role in the alternative splicing of a proto-oncogene, macrophage stimulating 1 receptor (MST1R), which encodes for the recepteur d’origine nantais (RON), a receptor tyrosine kinase. Our results indicate that HNRNPA2B1 mediates the exclusion of cassette exon 11 from MST1R, resulting in the generation of RON∆165 isoform, which was found to be associated with the activation of Akt/PKB signaling in HNC cells. Using the MST1R-minigene model, we validated the role of HNRNPA2B1 in the generation of RON∆165 isoform. The depletion of HNRNPA2B1 results in the inclusion of exon 11, thereby reduction of RON∆165 isoform. The decrease of RON∆165 isoform causes inhibition of Akt/PKB signaling, which results in the upregulation of E-cadherin and downregulation of vimentin leading to the reduced epithelial-to-mesenchymal transition. The overexpression of HNRNPA2B1 in HNRNPA2B1 knockout cells rescues the expression of the RON∆165 isoform and leads to activation of Akt/PKB signaling and induces epithelial-to-mesenchymal transition in HNC cells. In summary, our study identifies HNRNPA2B1 as a putative oncogene in HNC that promotes Akt/PKB signaling via upregulation of RON∆165 isoform and promotes epithelial to mesenchymal transition in head and neck cancer cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: HNRNPA2B1 expression in head and neck cancer.
Fig. 2: HNRNPA2B1 depletion reduced in vitro tumorigenesis of head and neck cancer cell.
Fig. 3: HNRNPA2B1 regulates the alternative splicing and promotes invasive behavior of head and cancer cells.
Fig. 4: HNRNPA2B1 promotes epithelial-to-mesenchymal transition.
Fig. 5: Schematic representation of HNRNPA2B1-mediated oncogenesis.

References

  1. 1.

    Gupta B, Johnson NW. Oral cancer: Indian pandemic. Br Dent J. 2017;222:497.

    CAS  PubMed  Google Scholar 

  2. 2.

    Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.

    CAS  PubMed  Google Scholar 

  3. 3.

    Massano J, Regateiro FS, Januario G, Ferreira A. Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodontics. 2006;102:67–76.

    Google Scholar 

  4. 4.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013;31:4550–9.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gupta A, Ajith A, Singh S, Panday RK, Samaiya A, Shukla S. PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis. 2018;9:825–15.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cocks H, Ah-See K, Capel M, Taylor P. Palliative and supportive care in head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130:S198–S207.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Narayanan SP, Singh S, Gupta A, Yadav S, Singh SR, Shukla S. Integrated genomic analyses identify KDM1A’s role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer. Cancer Lett. 2015;367:162–72.

    CAS  PubMed  Google Scholar 

  9. 9.

    Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205.

    CAS  PubMed  Google Scholar 

  10. 10.

    Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.

    CAS  PubMed  Google Scholar 

  11. 11.

    Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8:533–43.

    CAS  PubMed  Google Scholar 

  12. 12.

    Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Qiao L, Xie N, Bai Y, Li Y, Shi Y, Wang J, et al. Identification of upregulated HNRNPs associated with poor prognosis in pancreatic cancer. Biomed Res Int. 2019;2019:5134050–11.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Alsagaby SA. Transcriptomics-based validation of the relatedness of heterogeneous nuclear ribonucleoproteins to chronic lymphocytic leukemia as potential biomarkers of the disease aggressiveness. Saudi Med J. 2019;40:328–38.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Park SJ, Lee H, Jo DS, Jo YK, Shin JH, Kim HB, et al. Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells. Biochim Biophys Acta. 2015;1849:1423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162:1299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Cloutier A, Shkreta L, Toutant J, Durand M, Thibault P, Chabot B. hnRNP A1/A2 and Sam68 collaborate with SRSF10 to control the alternative splicing response to oxaliplatin-mediated DNA damage. Sci Rep. 2018;8:2206–14.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhou J, Nong L, Wloch M, Cantor A, Mulshine JL, Tockman MS. Expression of early lung cancer detection marker: hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer. Lung Cancer. 2001;34:341–50.

    CAS  PubMed  Google Scholar 

  19. 19.

    Barcelo C, Etchin J, Mansour MR, Sanda T, Ginesta MM, Sanchez-Arevalo Lobo VJ, et al. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Gastroenterology. 2014;147:882–92 e8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Qu XH, Liu JL, Zhong XW, Li XI, Zhang QG. Insights into the roles of hnRNP A2/B1 and AXL in non-small cell lung cancer. Oncol Lett. 2015;10:1677–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Guha M, Srinivasan S, Guja K, Mejia E, Garcia-Diaz M, Johnson FB, et al. HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discov. 2016;2:16045–16.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Stockley J, Villasevil ME, Nixon C, Ahmad I, Leung HY, Rajan P. The RNA-binding protein hnRNPA2 regulates beta-catenin protein expression and is overexpressed in prostate cancer. RNA Biol. 2014;11:755–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol. 2009;16:670–6.

    CAS  PubMed  Google Scholar 

  24. 24.

    Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, et al. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res. 2008;36:6535–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Roy M, Xu Q, Lee C. Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res. 2005;33:5026–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14:185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136:777–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Singh S, Narayanan SP, Biswas K, Gupta A, Ahuja N, Yadav S, et al. Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc Natl Acad Sci USA. 2017;114:11440–5.

    CAS  PubMed  Google Scholar 

  29. 29.

    Yadav S, Bhagat SD, Gupta A, Samaiya A, Srivastava A, Shukla S. Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer. BMC Cancer. 2019;19:1031–15.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wang MH, Lee W, Luo YL, Weis MT, Yao HP. Altered expression of the RON receptor tyrosine kinase in various epithelial cancers and its contribution to tumourigenic phenotypes in thyroid cancer cells. J Pathol. 2007;213:402–11.

    CAS  PubMed  Google Scholar 

  31. 31.

    Krishnaswamy S, Mohammed AK, Tripathi G, Alokail MS, Al-Daghri NM. Splice variants of the extracellular region of RON receptor tyrosine kinase in lung cancer cell lines identified by PCR and sequencing. BMC Cancer. 2017;17:738–7.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Krishnaswamy S, Bukhari I, Mohammed AK, Amer OE, Tripathi G, Alokail MS, et al. Identification of the splice variants of Recepteur d’Origine nantais (RON) in lung cancer cell lines. Gene. 2018;679:335–40.

    CAS  PubMed  Google Scholar 

  33. 33.

    Mayer S, Hirschfeld M, Jaeger M, Pies S, Iborra S, Erbes T, et al. RON alternative splicing regulation in primary ovarian cancer. Oncol Rep. 2015;34:423–30.

    CAS  PubMed  Google Scholar 

  34. 34.

    Camp ER, Yang A, Gray MJ, Fan F, Hamilton SR, Evans DB, et al. Tyrosine kinase receptor RON in human pancreatic cancer: expression, function, and validation as a target. Cancer. 2007;109:1030–9.

    CAS  PubMed  Google Scholar 

  35. 35.

    Maggiora P, Marchio S, Stella MC, Giai M, Belfiore A, De Bortoli M, et al. Overexpression of the RON gene in human breast carcinoma. Oncogene. 1998;16:2927–33.

    CAS  PubMed  Google Scholar 

  36. 36.

    Zhou D, Pan G, Zheng C, Zheng J, Yian L, Teng X. Expression of the RON receptor tyrosine kinase and its association with gastric carcinoma versus normal gastric tissues. BMC Cancer. 2008;8:353–7.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Thomas RM, Toney K, Fenoglio-Preiser C, Revelo-Penafiel MP, Hingorani SR, Tuveson DA, et al. The RON receptor tyrosine kinase mediates oncogenic phenotypes in pancreatic cancer cells and is increasingly expressed during pancreatic cancer progression. Cancer Res. 2007;67:6075–82.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell. 2005;20:881–90.

    CAS  PubMed  Google Scholar 

  39. 39.

    Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959–75.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249–59.

    CAS  PubMed  Google Scholar 

  41. 41.

    Collesi C, Santoro MM, Gaudino G, Comoglio PM. A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype. Mol Cell Biol. 1996;16:5518–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Moon H, Cho S, Loh TJ, Zhou J, Ghigna C, Biamonti G, et al. A 2-nt RNA enhancer on exon 11 promotes exon 11 inclusion of the Ron proto-oncogene. Oncol Rep. 2014;31:450–5.

    CAS  PubMed  Google Scholar 

  43. 43.

    Braun S, Enculescu M, Setty ST, Cortes-Lopez M, de Almeida BP, Sutandy FXR, et al. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat Commun. 2018;9:3315–18.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, et al. Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J. 2011;30:4084–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Bonomi S, di Matteo A, Buratti E, Cabianca DS, Baralle FE, Ghigna C, et al. HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal-to-epithelial transition. Nucleic Acids Res. 2013;41:8665–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Logan-Collins J, Thomas RM, Yu P, Jaquish D, Mose E, French R, et al. Silencing of RON receptor signaling promotes apoptosis and gemcitabine sensitivity in pancreatic cancers. Cancer Res. 2010;70:1130–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wang Q, Quan H, Zhao J, Xie C, Wang L, Lou L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Lett. 2013;340:43–50.

    CAS  PubMed  Google Scholar 

  48. 48.

    Kumari P, Saha I, Narayanan A, Narayanan S, Takaoka A, Kumar NS, et al. Essential role of HCMV deubiquitinase in promoting oncogenesis by targeting anti-viral innate immune signaling pathways. Cell Death Dis. 2017;8:e3078.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hu Y, Sun Z, Deng J, Hu B, Yan W, Wei H, et al. Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol. 2017;39:1010428317694318.

    PubMed  Google Scholar 

  50. 50.

    Dai S, Zhang J, Huang S, Lou B, Fang B, Ye T, et al. HNRNPA2B1 regulates the epithelial-mesenchymal transition in pancreatic cancer cells through the ERK/snail signalling pathway. Cancer Cell Int. 2017;17:12.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Chen M, Zhang J, Manley JL. Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 2010;70:8977–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463:364–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakacs A, Coppola L, et al. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res. 2011;71:4464–72.

    CAS  PubMed  Google Scholar 

  54. 54.

    Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN. Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol. 2010;190:377–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Wang H, Liang L, Dong Q, Huan L, He J, Li B, et al. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-kappaB pathway in hepatocellular carcinoma. Theranostics. 2018;8:2814–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Benight NM, Waltz SE. Ron receptor tyrosine kinase signaling as a therapeutic target. Expert Opin Ther Targets. 2012;16:921–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33:5311–8.

    CAS  PubMed  Google Scholar 

  58. 58.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Dowling P, Pollard D, Larkin A, Henry M, Meleady P, Gately K, et al. Abnormal levels of heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in tumour tissue and blood samples from patients diagnosed with lung cancer. Mol Biosyst. 2015;11:743–52.

    CAS  PubMed  Google Scholar 

  60. 60.

    Zhou ZJ, Dai Z, Zhou SL, Hu ZQ, Chen Q, Zhao YM, et al. HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res. 2014;74:2750–62.

    CAS  PubMed  Google Scholar 

  61. 61.

    Cui H, Wu F, Sun Y, Fan G, Wang Q. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma. BMC Cancer. 2010;10:356.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Li L, Yang Y, Wu M, Yu Z, Wang C, Dou G, et al. Beta-Asarone induces apoptosis and cell cycle arrest of human glioma U251 cells via suppression of HnRNP A2/B1-mediated pathway in vitro and in vivo. Molecules. 2018;23:1072.

    PubMed Central  Google Scholar 

  63. 63.

    Shi X, Ran L, Liu Y, Zhong SH, Zhou PP, Liao MX, et al. Knockdown of hnRNP A2/B1 inhibits cell proliferation, invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway. Oncol Rep. 2018;39:939–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Brandi J, Cecconi D, Cordani M, Torrens-Mas M, Pacchiana R, Dalla Pozza E, et al. The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition. Free Radic Biol Med. 2016;101:305–16.

    CAS  PubMed  Google Scholar 

  65. 65.

    Pan H, Luo C, Li R, Qiao A, Zhang L, Mines M, et al. Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration. J Biol Chem. 2008;283:623–37.

    CAS  PubMed  Google Scholar 

  66. 66.

    Yao HP, Zhou YQ, Zhang R, Wang MH. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer. 2013;13:466–81.

    CAS  PubMed  Google Scholar 

  67. 67.

    Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14:e1007362:1–25.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kornblihtt AR. Epigenetics at the base of alternative splicing changes that promote colorectal cancer. J Clin Investig. 2017;127:3281–3.

    PubMed  Google Scholar 

  69. 69.

    Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci USA. 2010;107:1894–9.

    CAS  PubMed  Google Scholar 

  70. 70.

    Zhou YQ, He C, Chen YQ, Wang D, Wang MH. Altered expression of the RON receptor tyrosine kinase in primary human colorectal adenocarcinomas: generation of different splicing RON variants and their oncogenic potential. Oncogene. 2003;22:186–97.

    CAS  PubMed  Google Scholar 

  71. 71.

    Eckerich C, Schulte A, Martens T, Zapf S, Westphal M, Lamszus K. RON receptor tyrosine kinase in human gliomas: expression, function, and identification of a novel soluble splice variant. J Neurochem. 2009;109:969–80.

    CAS  PubMed  Google Scholar 

  72. 72.

    Yao HP, Zhuang CM, Zhou YQ, Zeng JY, Zhang RW, Wang MH. Oncogenic variant RON160 expression in breast cancer and its potential as a therapeutic target by small molecule tyrosine kinase inhibitor. Curr Cancer Drug Targets. 2013;13:686–97.

    CAS  PubMed  Google Scholar 

  73. 73.

    Wang J, Li L, Liu S, Zhao Y, Wang L, Du G. FOXC1 promotes melanoma by activating MST1R/PI3K/AKT. Oncotarget. 2016;7:84375–87.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Kim SA, Lee KH, Lee DH, Lee JK, Lim SC, Joo YE, et al. Receptor tyrosine kinase, RON, promotes tumor progression by regulating EMT and the MAPK signaling pathway in human oral squamous cell carcinoma. Int J Oncol. 2019;55:513–26.

    CAS  PubMed  Google Scholar 

  75. 75.

    Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    CAS  PubMed  Google Scholar 

  76. 76.

    Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust/Department of Biotechnology (DBT) India Alliance Fellowship grant IA/I/16/2/502719 and Board of Research in Nuclear Sciences (BRNS) (37(1)/14/30/2016-BRNS). AG was supported by a fellowship from IISER Bhopal, SY was supported by a fellowship from Centre for Scientific and Industrial Research (CSIR), and APT was supported by a fellowship from the Department of Science & Technology (DST). We also thank all members of the Epigenetics and RNA Processing Lab for their helpful discussions and technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Yadav, S., PT, A. et al. The HNRNPA2B1–MST1R–Akt axis contributes to epithelial-to-mesenchymal transition in head and neck cancer. Lab Invest (2020). https://doi.org/10.1038/s41374-020-0466-8

Download citation