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Abstract

Hepatic steatosis droplet quantification with histology biopsies has high clinical significance for risk stratification and
management of patients with fatty liver diseases and in the decision to use donor livers for transplantation. However,
pathology reviewing processes, when conducted manually, are subject to a high inter- and intra-reader variability, due to the
overwhelmingly large number and significantly varying appearance of steatosis instances. This process is challenging as
there is a large number of overlapped steatosis droplets with either missing or weak boundaries. In this study, we propose a
deep-learning-based region-boundary integrated network for precise steatosis quantification with whole slide liver
histopathology images. The proposed model consists of two sequential steps: a region extraction and a boundary prediction
module for foreground regions and steatosis boundary prediction, followed by an integrated prediction map generation.
Missing steatosis boundaries are next recovered from the predicted map and assembled from adjacent image patches to
generate results for the whole slide histopathology image. The resulting steatosis measures both at the pixel level and
steatosis object-level present strong correlation with pathologist annotations, radiology readouts and clinical data. In
addition, the segregated steatosis object count is shown as a promising alternative measure to the traditional metrics at the
pixel level. These results suggest a high potential of artificial intelligence-assisted technology to enhance liver disease
decision support using whole slide images.

Introduction

Liver steatosis is a disease caused by an excessive accu-
mulation of lipids in liver cells [1]. Clinically, it is important
to accurately measure steatosis components, as steatosis
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liver transplant recipients with rich steatosis components
tend to have a higher rate of primary graft dysfunction and/
or renal failure in 80% of cases [2]. In spite of the recent
advance in non-invasive diagnostics, histopathology review
of steatosis components in liver tissue biopsies is an
important factor for the assessment of fatty liver disease and
other liver conditions. Staging of steatosis can provide
guidance to clinicians with regard to diagnosis severity and
the necessity for liver disease treatment [3]. In clinical
practices, pathologists determine the degree of steatosis
components by examining the hematoxylin and eosin
(H&E) stained tissue slides. However, their estimations are
prone to both large intra- and inter-observer variability due
to unacceptable sampling bias and poor reproducibility [4].
With the advent of high throughput digital scanners,
computer-based methods have been developed to automate
tissue microscopy image processing in a large variety of
analyses, ranging from histopathology object detection,
segmentation, to classification [5-8]. Despite the active
development in this field, the ability to extract clinically
relevant phenotype information from the whole slide images
remains limited [9].

Deep learning-based methods have become popular in
the computer vision domain, due to their state-of-the-art
performance in a wide range of applications, including
image classification [10, 11], object detection, and seg-
mentation tasks [12]. Deep learning is a class of emerging
machine learning methods that can computationally learn
low-level image features for computerized image analysis
[13]. Deep learning works with artificial neural networks
that are comprised of layers of nodes as analogous to per-
ceptron neurons interconnected in human brains. In each
layer, the deep learning model has a convolution layer that
applies different image filters to convolve with input image
for low-level image feature extraction. The final layer
compiles the weighted inputs to produce an output. Unlike
the traditional machine learning methods, no manual feature
engineering is required for deep learning models. As the
model keeps exploring new image features and optimizing
node connection weights during the training stage, it can
achieve promising performance after the model is fully
trained. Numerous image segmentation methods based on
convolutional neural networks (CNNs) have been proposed,
including nuclei detection, segmentation, and gland seg-
mentation, among others. For example, a CNN based model
is trained for nucleus segmentation followed by a deform-
able shape model for touching nuclei separation [6]. In a
similar study, CNN is applied to enhanced gray-scale ima-
ges for nuclei segmentation [14]. The segmented result is
refined by morphological operators. In a gland segmentation
study, CNN outperforms Support Vector Machine classifier
that requires the handcrafted feature extraction for glandular
structure segmentation in colon histology images [15].
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Additionally, it has been demonstrated that fusing multiple
channels with CNN models can lead to improved gland
segmentation results [16, 17].

By comparison, fully convolutional neural network
(FCN) [18] is more efficient and accurate for the semantic
segmentation scenarios, where fully connected layers are
embedded in CNNs, enabling an end-to-end training and
testing. With FCN as a building block, a novel deep
contour-aware network (DCAN) with a unified multi-task
learning framework is proposed [19]. Multi-level contextual
features are explored based on an end-to-end FCN for
accurate gland detection and segmentation. Additionally, a
nucleus-boundary model is introduced to predict nuclei
regions and their boundaries simultaneously by a FCN [20].
U-Net [12] is yet another popular model in the FCN family
that employs a U-shape deep convolutional network
designed for biomedical image segmentation problems with
the state-of-the-art performance even when the amount of
training data is limited. Additionally, Holistically-nested
Neural Networks (HNN) have demonstrated their promising
performances for object segmentation in the medical ima-
ging domain [16, 17, 21]. Their main advantage is that the
resulting performance can be continuously improved as the
training data scale increases. Additionally, this model can
capture the underlying structure complexity and appearance
of overlapping objects through an automatic feature learn-
ing mechanism in the training stage. Meanwhile, multiple
network aggregation for the enhanced performance has been
proposed. For example, ENet based models are trained for
nuclear region and boundary prediction [22]. This is fol-
lowed by the third ENet to combine the output of region-
and boundary-ENets.

In clinical practice, there is a lack of objective ways to
quantify steatosis due to multiple challenges. First, it is
challenging to detect and segment the steatosis components
from whole slide liver histopathology images, as steatosis
droplets are subject to large variation in shape, size and
appearance in distinct tissue sections [23]. Additionally, a
large number of steatosis droplets are found in clumps with
missing or weak separating borders. While isolated steatosis
droplets are mostly circular in shape, overlapped instances
have irregular shapes. Numerous methods based on hand-
crafted features have been proposed for histopathology
structure segmentation, ranging from thresholding [24],
watershed, deformable models, morphological operations to
sophisticated methods such as graph based methods [25].
However, hand-crafted features are limited in representation
power and subject to feature parameters. Given the large
variations in structures of overlapped steatosis droplets, it is
challenging to define robust features suitable for all cases.
The resulting performance of traditional supervised learning
methods, such as support vector machine (SVM), Adaboost
or Bayesian, can be significantly deteriorated, as they highly
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depend on these hand-crafted features. Due to the presence
of overlapped steatosis droplets in large tissue areas, no
prior image analysis method for overlapped steatosis droplet
quantification is equipped with whole slide image analysis
capability to improve the clinical decision support.

In this paper, we present a steatosis segmentation model to
identify individual steatosis and delineate boundaries of
overlapping steatosis instances in whole slide microscopy
images of liver biopsies. Specifically, a region-based module
is designed to segment the foreground steatosis droplet region
from background pixels, while a boundary module is intro-
duced to learn the perceptual boundary features for each
overlapped steatosis region. Next, the region and boundary
information are combined to train the third deep neural net-
work responsible for dividing steatosis droplets in clumps.
The proposed network architecture is named as DeEp
LearnINg stEATosis sEgmentation (DELINEATE). We pro-
vide both patch-wise and whole slide steatosis prediction
analysis. For each patch, the pixel-wise analysis strategy is
applied. Although some partial steatosis components are
found crossing adjacent patches in most cases, the border area
in each patch lacks such contextual information. To address
this problem, we use a spatial indexing based approach to
identify partial steatosis droplet components from neighboring
patches, and have them efficiently assembled by MaRelA
[26], a tool we developed in our prior work.

We quantitatively assess the accuracy of our method and
compare it with other state-of-the-art methods. Our method is
systematically validated with whole slide liver histopathology
images of 36 patients with nonalcoholic fatty liver disease
(NAFLD) collected from Children’s Hospital of Atlanta and
Emory University. The resulting DELINEATE steatosis
measurements at both steatosis pixel level and isolated stea-
tosis object level are strongly correlated with gold standard
pathological review results, patient clinical data, and fat
readout from MRI images of the same patient cohort. Statis-
tical tests suggest that DELINEATE derived steatosis mea-
sures both at steatosis pixel and isolated steatosis object level
are promising clinical indicators presenting statistically sig-
nificant difference between (1) two diagnostic groups—non-
alcoholic steatohepatitis (NASH) and nonalcoholic fatty liver
(NAFL), and (2) groups with and without lobular inflamma-
tion. In addition, steatosis object-level measure is found as an
informative alternative to the pixel level measure for differ-
entiating histological steatosis grades.

Materials and methods
Data pre-processing

Whole slide images, human annotations, radiology readouts
and clinical data were obtained from the Children’s Hospital

of Atlanta and Emory University. All liver tissue permanent
sections were formalin-fixed and paraffin-embedded and
stained by H&E. Resulting images of permanent section
slides were reviewed to exclude those with unacceptable
tissue-processing artifacts. Portal tract areas with bile ducts
and large vessels were manually excluded, leaving only
hepatic lobules for quantitative analysis. Each whole slide
image contains multiple tissue components. To reduce
image size for analysis, we extracted complete tissue
component images capturing minimum non-tissue areas by
rotations at the highest image resolution level from original
whole slide images [27]. The resulting whole tissue com-
ponent images were still too large to feed into deep learning
models for steatosis prediction. Therefore, each complete
tissue component image was partitioned to non-overlapping
image patches of size 512 x 512 pixels. This process results
in 2050 image patches that are divided into training and
validation cohorts with a ratio of 80:20. All image patches
were extracted at 20x objective magnification using Open-
Slide [28]. As colors of H&E stained images depend on
numerous factors related to the tissue preparation, staining,
and scanning process [20], they can vary significantly.
Thus, all images were normalized to a standard H&E cali-
bration image by the stain color [29] before analysis. Whole
slide images of human liver biopsies from 36 unique
patients were analyzed, with an average image resolution of
30,000 x 20,000 by pixels.

DELINEATE architecture

As demonstrated in Fig. la, the proposed DELINEATE
model for steatosis segmentation has an end-to-end deep
learning process in two stages. First, the foreground stea-
tosis regions and their boundaries are identified and sepa-
rated. Next, the resulting prediction outputs are combined in
the integrative module for the clumped steatosis
segmentation.

The steatosis region extraction module has a modified U-
Net [12] architecture consisting of four encoding and
another four decoding layers, aiming at identification of the
steatosis components from the background. Different levels
of contextual feature maps are extracted by the encoding
layers, while the decoding layers generate probability masks
of steatosis regions. As a way to reduce spatial information
loss, the high-resolution feature maps from the encoder
layers are connected to the corresponding decoder layers.
Additionally, dilated convolution [30] is used to exponen-
tially expand the receptive field, decrease space-invariance,
and reduce detailed spatial information loss by max-pooling
and strided convolution in the down-sampling path, con-
tributing to a promising segmentation accuracy as demon-
strated in Table 1. Three dilated convolution layers at a rate
of 1, 2 and 4 are stacked at the bottleneck block where the
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Fig. 1 The DELINEATE model. The DELINEATE model first
identifies regions and boundaries of steatosis droplets individually (a).
The resulting two output predictions are combined for generating an
integrated prediction map where the clumped steatosis regions are

separated. The region extraction module detects steatosis regions with

(D) Region Boundary Integration Module: FCN-8s

Table 1 Comprehensive performance comparison of steatosis segmentation methods.

a dil-Unet module (b). The steatosis boundary detection module is
based on a Holistically-Nested Network (HNN) (c). The region-
boundary integration network generates the final prediction output
from the integrated region and boundary information (d).

Models Approach Precision Recall F1-Score | Object wise | Object wise
Dice Index | Hausdorff

Distance

Standard FCN 0.99 0.01 0.86 0.06 0.92 0.04 0.8338 3.8521
Models DeeplLab V2 0.99 0.01 0.83 0.08[ 0.90 0.05 0.9083 5.3179
dil-Unet + HNN + FCN-8s 0.98 0.01 0.91 0.06) 0.94 0.03 0.9492 3.4591
dil-Unet + HNN + FCN-4s 0.97 0.01 0.91 0.06[ 0.94 0.03 0.9480 3.5753
Variations of Unet + HNN + FCN-4s 0.97 0.01 0.91 0.06[ 0.94 0.03 0.9489 3.4685
Our Models dil-Unet + HNN + dil-FCN 0.97 0.01 0.91 0.06[ 0.94 0.03 0.9459 3.6658
Unet + Unet + Unet| 0.97 0.04] 0.83 0.07| 0.90 0.05 0.9247 5.8289
Unet + Unet + FCN-8s 0.96 0.03[ 0.90 0.06] 0.93 0.04 0.9458 3.8773

SPRINGER NATURE
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feature maps have the lowest resolution. This architecture,
named as dil-Unet, is illustrated in Fig. 1b. Input images of
size 512 x 512 are used for training and testing this model.
All kernels used in each convolutional layer are initialized
by the standard Xavier initialization [31] and the bias is
initialized with zero.

The steatosis region extraction network minimizes
the softmax cross entropy loss L" between the prediction
map P and the target ¥

L= =33y (i) log(P" (ijle, w)) (1)

c=1 ijeQ

Where K =2 is the number of classes, y" is the binary
indicator of the true label at pixel (i, j) in an image domain
Q, and P'(ijlc, w', b") is the output of soft-max activation
layer indicating the probability of the pixel (i, j) having
label c. We use Adam optimizer [32] along with exponential
learning rate decay to optimize the parameter set w” by
back-propagation.

In addition to the region supporting information from dil-
Unet, a complementary steatosis boundary detection mod-
ule with holistically-nested neural network (HNN) [33]
derived from VGGNet is used to delineate the hidden
boundaries of the overlapped steatosis droplets. The archi-
tecture of this module is depicted in Fig. 1c. The module
consists of five convolutional stages of distinct receptive
field sizes and stride values (i.e., 1, 2, 4, 8, and 16),
respectively. Additionally, it has M side-output layers ser-
ving as classifiers with weights w = (w(l),...,w(M)).

The steatosis boundary module is a combination of a
HNN and a “weighted-fusion” layer trained in parallel
during the training phase [21, 33]. The parameter set W is
initialized by the pre-trained network [33] and updated with
our training data (X,Y?). The training process minimizes the
following loss function:

LW,ow) = anl"(W, w") +Dist(Y, 172> 2)

m=1

where [" is computed over all pixels of training image pair
(X, Y), and represents the image level loss function from
side output m. Each side output [ is refined for
minimization over iterations; Y, = U(an/l:l B a™(i.j)) is
the output from the “weighted-fusion” layer with fusion
weights {£;}. Sigmoid activation function o(*) is used to
compute the class probability of each pixel (i, j); Dist(") is
the cross-entropy loss with the fused predictions and the
ground truth label maps. Resulting optimal parameters are
found by the objective function minimization with stochas-
tic gradient descent and back propagation in training. In the
testing phase, the prediction is generated from side output
layers and the weighted-fusion layer. The 5th side output is

used to represent steatosis boundaries as it produces results
with good contrast after careful visual inspections.

Experimentally, neither region nor boundary information
on its own is sufficient for accurate steatosis droplet seg-
mentation. Additionally, neither direct combination nor
simple concatenation of the two channels of outputs pro-
vides precise boundary information for overlapped steatosis
droplets. As a result, a fully convolutional network (FCN)
[18] is used to integrate complementary information from
steatosis region and boundary modules for final prediction.

Specifically, FCN-8s as illustrated in Fig. 1d, with skip
connections from pool3 and pool4 are used for better deep
semantic information integration on the down-sampling
path. The final output has three channels representing the
probabilities of each pixel being background, boundary, or
region class, respectively. The integrated network is trained
with softmax cross-entropy loss and Adam optimizer [32].
Dropout with probability of 0.3 is used to overcome the
over-fitting problem.

Training and validation of data

Each whole tissue component image was partitioned to non-
overlapping image patches for generating training and vali-
dation data. Each steatosis component boundary was anno-
tated by domain experts and served as the ground truth for
the steatosis boundary prediction module. The region labels
derived from the gold standard boundaries were used for the
steatosis region extraction module. Deep learning model
training requires a large set of training data to avoid the
over-fitting problem. For pathology image review, however,
it is highly time-consuming to manually label all steatosis
boundaries in a large image patch set by domain experts.
Therefore, the limited human-annotated training data set for
the steatosis region module was augmented by the horizontal
flip, vertical flip, rotation in four-degree angles, and re-
scaling by 0.5 scales. Similarly, each image patch was
rotated in 16 different angles and flipped at each angle to
generate an augmented training set for the boundary module.
A total of 1471 patches of size 512 x 512 were used for this
study where 735 were randomly selected for the region and
boundary module training, with the remaining 736 for the
integrative network training. Each cohort was split into
80:20 for training and validation image generation. The test
set consists of 150 patches from a new set of tissues not seen
in the training and validation sets. The region and boundary
modules were trained separately. Their outputs were com-
bined to train the integrated network in turn.

Post-processing

The FCN-8s integration network predicts steatosis region,
boundary, and background classes. The resulting prediction

SPRINGER NATURE
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map is binarized with a cutoff value of 0.5. Each connected
component in the binary mask represents the internal region
of a steatosis droplet. For overlapped steatosis droplet
segregation, we further apply the high curvature point
detection and an ellipse fitting quality assessment method in
the post-processing [27]. Specifically, high curvature points
on a steatosis contour are detected [34] and combined with
adjacent high curvature points in aggregated point repre-
sentations. High curvature points in all possible pairs are
connected by straight lines for further division assessment.
Each such candidate line partitions the overlapped steatosis
region into two components. The partitioning quality is
further assessed by fitting an ellipse for each component.
For each divided component, we next compute the ratio of
the intersection to union area of the resulting ellipse and the
partitioned steatosis region. Of all possible candidate point
pairs, we only connect the paired points with maximum
ratios both greater than the fitting quality cutoff value of
0.7. Post-processing results are illustrated in Fig. S1.

Patch-wise segmentation assembly for whole tissue
image analysis

Due to the limitation of GPU memory size, deep learning
methods cannot process a single high-resolution whole-
slide histopathological image at once. Therefore, we
divide each whole tissue image into 512x 512 image
patches for model training and prediction. As the FCN
family algorithms do not provide accurate border area
prediction [20], we use a generic MapReduce based Image
Analysis framework (MaRelA) to avoid counting dupli-
cates of steatosis droplets crossing patch borders [26]. The
framework introduces an overlapping partitioning method
that partitions whole tissue component images into pat-
ches with extended buffers for accurate segmentation,
eliminating the boundary-crossing object problem. The
buffer zone is adjusted according to the histology struc-
ture size in such a way that it is large enough to com-
pletely contain histology objects of interest in the buffer
zone. The block diagram in Fig. 5b illustrates individual
steps of steatosis quantification with whole tissue com-
ponent images. First, we extract the overlapping patches
of size 512x512 from each whole tissue image. The
resulting patches are processed by the steatosis segmen-
tation pipeline. Next, all patches are merged with MaRelA
that generates a steatosis prediction map for each whole
tissue component. The resulting output is further polished
by the post-processing step. One typical whole tissue
steatosis segmentation result is demonstrated in Fig. Sa.
As the proposed solution to patch-wise result aggregation
is generic, it can be applied to a large number of whole
slide image analysis research where aggregation of results
from patches in whole slide images is important.

SPRINGER NATURE

Hardware and software specifications

The developed framework is implemented with the open-
source deep-learning library TensorFlow [35] and Keras
[36]. The experiments is carried out on Tesla K80 and V100
GPUs with CUDA 9.1. Adam optimization algorithm [32]
is used to train all three modules. The initial learning rate
and learning rate decay are set as 0.0001 and 0.9 respec-
tively for the steatosis region module, while the boundary
detection module is trained with a learning rate of 0.001 and
a weight decay of 0.0002. The parameters of boundary
module and integration module are initialized by pre-trained
VGG16 model [11]. In the training phase, the learning rate
of the integration network FCN-8s is set as 1.00e >

Results

Steatosis droplet segmentation using DELINEATE
model

The overall DELINEATE framework is illustrated in Fig. 1.
Our proposed DELINEATE model for steatosis segmenta-
tion is a region-boundary integrated network architecture
and has an end-to-end deep learning process in two stages.
First, the foreground steatosis droplet regions and their
boundaries are identified separately. The resulting two
output predictions are combined to create a final prediction
map in the second stage where the clumped steatosis dro-
plets are divided into separate components (Methods).

For steatosis region segmentation, we built the archi-
tecture based upon the FCN family model U-Net [12] by
stacking dilated convolutional layers at the bottleneck of the
U-Net model. The dilated convolution enhances the net-
work performance with a wider receptive field without the
down-sampling operation, resulting in more accurate seg-
mentation than the standard U-Net model as demonstrated
in Fig. 2a. To better learn steatosis boundary features, we
used Holistically-nested Neural Network (HNN) to capture
low, middle and high-level contour signatures from hier-
archically embedded multi-scale edge fields [21, 33].
Instead of summing all side outputs by weights, we propose
to retain the single side output from the fifth side as the
steatosis boundary prediction result.

By detecting the boundary in an additional module, we
can delineate the hidden boundaries of overlapped steatosis
regions, and therefore, improve steatosis segmentation
accuracy. Therefore, we further used a fully convolutional
network [18] with skip connection to integrate the derived
region and boundary information and produced the final
prediction map of three classes: steatosis droplet region,
steatosis boundary, and the background. Specifically, FCN
with a transposed convolution layer having a stride 8 (FCN-
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U-Net Result
(A)

dil-Unet Result

Original Image

Fig. 2 Comparison of segmentation results. Comparison of seg-
mentation results between dil-Unet and the standard U-Net model
(a). Left: original images; Middle: steatosis segmentation by U-Net
model; Right: steatosis segmentation by the proposed dil-Unet model.
By contrast, dil-Unet can recover steatosis regions with a substantially
improved accuracy. Comparison of results from the DELINEATE

8s) at the final layer was used to generate the resulting
segmentation map. With extensive experiments, we
demonstrate that such integrative network leveraging
information from both the region and the boundary detec-
tion module will help remove large false-positive regions
(Fig. 2b).

Evaluation of DELINEATE segmentation accuracy

To evaluate the DELINEATE model accuracy, we applied
our method to whole-slide liver histopathology images of
36 children with nonalcoholic fatty liver disease (NAFLD)
collected from Children’s Hospital of Atlanta and Emory
University. The corresponding demographics, steatosis
diagnostics, radiology measures, and clinical outcome of the
patient cohort are summarized in Table S1. As each whole
slide liver image may contain multiple tissue components,
we retained each such tissue component in a separate image
for analysis [27] (Method).

The segmentation accuracy of DELINEATE model was
evaluated by five-fold cross-validation method. We ran-
domly partitioned the dataset (Supplement S1: Dataset) into
a training and a testing set by a ratio of 80:20. We trained
the DELINEATE model with the training set and evaluated
the accuracy of the model with testing. Steatosis quantifi-
cation accuracy was measured both at the object level and
the pixel level. The object-level measures include F; score,
precision, recall [37] and Hausdorff Distance. True positive

(B)

model (b). Top-Left: input image; Top-Right: output from the region
extraction module; Bottom-Left: output from the boundary detection
module; and Bottom-Right: final output of the integration module. “1”
labels the false-positive steatosis region captured by the region pre-
diction module, and “2” labels the corrected steatosis regions by the
final integration module.

is counted when a segmented steatosis droplet shares more
than 50% of its area with the ground truth. Otherwise, it is
considered as a false positive. Ground truth steatosis regions
not segmented by DELINEATE are considered False
Negative. To accurately assess overlapped steatosis seg-
mentation results, we used object-level Dice index [16, 19]
for method evaluation at the pixel level. Without loss of
generality, G is denoted as a ground truth set for steatosis
instances and P as a set of machine segmented steatosis
instances. For the ith steatosis instance G; in the ground
truth set, we found the maximally overlapped segmented
steatosis instance P; in the same image and computed the
Dice index D(G;, P;). Similarly, for the jth segmented
steatosis instance P;, we detected the maximally overlapped
ground truth steatosis instance G; and computed the Dice
indexDG;, P;. The resulting object-level Dice score D(G, P)
is defined as follows:

Np

Ng
DG, P) =3 | wb(Gy P) + > wDG P)| ()
i=1 1

i=

where w; is the ratio of the number of pixels in the ith
ground truth instance to the sum of all pixels in all steatosis
components in the ground truth image; w; is the ratio of the
number of pixels in the ith instance from deep learning
model to the sum of all pixels in all steatosis components in
the automated segmented image. Ng and Np are the
numbers of steatosis instances in the ground truth set and
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the corresponding machine segmented result set. As
morphological features are important for steatosis droplet
identification, we computed Hausdorff distance to evaluate
shape similarity. We computed an object-level Hausdorff
distance in the same way as for the object-level Dice score.

Table 1 summarizes the segmentation performance of
our proposed DELINEATE model, and comparison results
with other methods, including baseline FCN, DeepLab [38],
and multiple variations of our proposed model. By contrast

to other methods, DELINEATE dil-Unet+HED-+FCN-8s
achieves the best overall performance, as indicated by F1-
score, Recall, object-wise Dice index and object-wise
Hausdorff distance [39]. We represent DELINEATE
model and its variations by connecting three modules with
‘4’ sign for easy interpretation. Compared to the other
models, DELINEATE results in a higher object-wise dice
index and a lower object-wise Hausdorff distance [39],
indicating its superior performance. Note that DELINEATE

Original Image Ground Truth FCN

Fig. 3 Visualization of segmented steatosis droplets in masks of
distinct colors. From left to right column: original image, ground
truth, results from FCN, DeepLab V2, U-Net+U-Net+U-Net (one
variation of our proposed model), and dil-Unet+HNN-+FCN-8s
(proposed DELINEATE model), respectively. The clumped steatosis
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DeeplLab Unet+Unet+Unet Dil-Unet+HNN+FCN8s

regions indicated by black boxes in all images are well separated by
DELINEATE model but failed by other methods in the comparison
study. Additionally, problematic regions in green boxes are only fully
recovered by DELINEATE model.
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model substantially outperforms state-of-the-art FCN and
DeepLab models and achieves better performance on deli-
neating overlapped steatosis droplets guided by joint region
and boundary information. Neither FCN nor DeepLab can
process touching steatosis droplets accurately with missing
region-boundary integrative information, resulting in lower
performance scores. The salient difference in performance
across these methods is visually confirmed by Fig. 3
where each segmented steatosis region is illustrated in a
unique color. It is noticeable that touching regions high-
lighted by black boxes are well separated by DELINEATE
model, whereas they are incorrectly segmented by other
methods for comparison. Green boxes are used to highlight
challenging steatosis regions where only DELINEATE
model can accurately recognize steatosis components. We
further visualize patch-wise and instance-wise steatosis
segmentation accuracy heat maps of one representative
tissue component in Figs. S5 and S6 within Supplemental
Information. These visual results demonstrate a high con-
cordance between the DELINEATE segmentation results
and annotations and confirm the efficacy of our proposed
model.

DELINEATE correlation with pathological grading,
radiology, and clinical data

The results produced by the DELINEATE model present
strong correlations with liver tissue pathological grading, fat
quantity from MRI data, and patient clinical information.
The correlation analysis includes 36 children diagnosed
with NAFLD. This cohort of patients underwent a liver
biopsy at the Children’s Hospital of Atlanta between 2014
and 2016. NAFLD diagnosis was established by liver
biopsy, and other etiologies were excluded by standard
clinical and laboratory assessment. All liver biopsies were
clinically diagnosed and each section was blindly reassessed
by an expert pathologist at Emory University Hospital.
Basic demographic characteristics were collected at the time
of the biopsy. All parents or guardians signed an informed
consent form and all children provided written assent in
these studies, which were approved by the Emory Uni-
versity IRB board. Spearman’s correlation was used to
analyze the correlation between two  variables.
Mann—Whitney test (for non-parametric data) was used to
compare the difference between two groups. For compar-
isons across diverse steatosis groups, DELINEATE was
logarithmically transformed before analysis. Analysis of
Variance (ANOVA) was used to study the difference
among four histological steatosis grading groups. This
was followed by Tukey’s multiple comparison post-test.
All statistical analyses were performed using R (version
3.4.2). Data were considered statistically significant for
p value <0.05.

Table 2 Correlation coefficients and p values are presented for
pairwise correlations using steatosis measures, results of a gold
standard histology review, and manual fat readout from MRI images.

Correlation DSP % DSC % ASP %
measure (p value) (p value) (p value)
Macrovesicular 0.85 (<0.001) 0.90 (<0.001) 0.83 (<0.001)
steatosis%

0.85 (<0.001)
0.85 (<0.001)
0.94 (<0.001)

0.90 (<0.001) 0.84 (<0.001)
0.82 (<0.001) 0.83 (<0.001)
0.91 (<0.001) -

Total steatosis%
MRI fat readout
Aperio pixel%

Steatosis measures include DELINEATE Steatosis Pixel% (DSP%),
DELINEATE Steatosis Count% (DSC%) and Aperio Steatosis Pixel%
(ASP%), respectively.

We present in Table 2 the Spearman correlation coeffi-
cients between steatosis measures from DELINEATE and
all the following measures, including manual macro-
vesicular steatosis measure, manual total steatosis measure,
fat readout from MRI images of the same patient cohort,
and Positive Pixel Counting by Aperio [40], respectively.
With DELINEATE, we computed both steatosis pixel per-
centage (DSP%) and isolated steatosis droplet count per-
centage (DSC%). Both measures were normalized by tissue
sizes. Note that we report steatosis droplet count in per-
centage to match to steatosis measure representation in prior
work on the assessment of steatosis measure [41] and from
the Nonalcoholic Steatohepatitis Clinical Research Network
[42]. For comparison, a third-party commercial software
Aperio positive pixel counting was used to measure stea-
tosis pixel percentage (ASP%). Note that this software
supports pixel-wise classification. However, it cannot group
pixels to form individual steatosis. It can neither detect
weak or missing boundaries for dividing steatosis droplets
in clumps. DSP% and DSC% present strong correlations
with all these histology and radiology measures that are
manually confirmed. Note that DSC% from DELINEATE
presents the strongest correlation with Total Steatosis and
Macrovesicular Steatosis by histology review, while DSP%
from DELINEATE has the best correlation with MRI fat
quantification. Enhanced correlations between measures
from DELINEATE and well-verified gold standard suggest
accurate steatosis measures from histology images with our
proposed DELINEATE method. In Fig. 4a—c, we illustrate
DSC% correlations with other histology and radiology
measures, with overlaid linear regression lines in the scatter
plots.

For group median and mean difference investigations,
we applied Mann—Whitney test to steatosis measures
between two diagnostic groups NAFL and NASH, and
between groups with and without lobular inflammation,
respectively. As this study cohort includes NASH cases, we
can test the hypothesis that higher degrees of steatosis are
associated with higher degrees of inflammation, which is in
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Fig. 4 DELINEATE correlations with manual histology assess-
ment results, and radiology data derived features. Pair-wise scatter
plots with correlation coefficients (p values) are illustrated for
DELINEATE Steatosis Count% (DSC%) at individual droplet level
and manual macrovesicular steatosis measures (a); manual total stea-
tosis measures (b); manual fat readout from MRI images (c). We

applied Mann—Whitney test to DSC% measures between Lobular
Inflammation presence and absence (d); and between NAFL (i.e., Non-
NASH) and NASH (e), respectively. We applied ANOVA to DSC%
measurements of tissue samples among four manually graded histo-
logical steatosis percentage groups with p value less than 5.25¢~' (f).

Table 3 Mean, median, and range of DELINEATE Steatosis Pixel% (DSP%), DELINEATE Steatosis Count% (DSC%), and Aperio Steatosis

Pixel% (ASP%) are presented with the associated p values of Mann—Whitney test.

Steatosis measure Lobular inflammation Diagnosis Overall
Absent Present p value  NAFL NASH p value
DSP%
Mean(SD) 5.24 (7.01) 12.1 (8.20) 0.036 8.75 (1.75) 17.0 (7.64) 0.010 10.6 (8.38)
Min, Median, Max ~ 0.538, 2.15, 21.5 0.300, 12.6, 27.4 0.300, 7.34, 26.2 2.20, 17.4, 27.4 0.300, 8.49, 27.4
DSC%
Mean (SD) 1.37e—3 (1.43e—3)  2.72e—3 (1.52¢e—3)  0.030 2.08e—3 (1.54e—3)  3.62e—3 (1.11e—3)  0.010 2.42e—-3 (1.58e—3)
Min, Median, Max ~ 2.89e—4, 8.64e—4, 1.84e—4, 2.76e—3, 1.84e—4, 1.84e—3, 1.72e—3, 3.9e—3, 1.84e—4, 2.37e-3,
4.55¢—3 5.08e—3 5.08e—3 4.9e—3 5.08e—3
ASP%
Mean (SD) 10.1 (8.04) 16.5 (9.51) 0.070 13.1 (8.72) 222 (9.12) 0.020 15.1 (9.49)
Min, Median, Max ~ 1.88, 9.57, 27.1 0.641, 18.1, 31.5 0.641, 11.9, 31.5 1.84,24.2, 30.9 0.641, 13.5, 31.5

turn associated with more severe NASH cases. Three stea-
tosis measures, ASP%, DSP% and DSC%, were used for
group difference analysis. Specifically, box plots of these
two analyses with DSC% are demonstrated in Fig. 4d, e.
The mean, standard deviation and median of these measures
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and p values of statistical tests are presented in Table 3.
Notably, DELINEATE steatosis measures present statisti-
cally significant group difference in both analyses. Speci-
fically, the steatosis object-level measure DSC% produces
the least p value in lobular inflammation comparison, and
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Table 4 ANOVA and Tukey’s multiple comparisons test with liver
tissue steatosis measures across four manually annotated steatosis
percentage groups with p values adjusted by the Benjamini—Hochberg
method.

Table 5 Performance of DELINEATE Steatosis Pixel% (DSP%),
DELINEATE Steatosis Count% (DSC%), and Aperio Steatosis Pixel
%, (ASP%) for differentiation of patient groups of steatosis grades by
pathologist assessment.

Statistical test DSP% DSC% ASP%
ANOVA 7.86e—09 5.25e—14 3.37e—09
<5 vs 5%-33% 0.005 0.25 0.69

<5 vs 33%-66% <0.001 <0.001 0.002
5-33% vs 33-66% <0.001 <0.001 0.005

<5 vs >66% <0.001 <0.001 <0.001
5-33% vs >66% <0.001 <0.001 <0.001
33-66% vs >66% 0.01 <0.001 0.001

The adjusted p value for DELINEATE Steatosis Pixel% (DSP%),
DELINEATE Steatosis Count% (DSC%) and Aperio Steatosis Pixel%
(ASP%) are shown in column 2, 3 and 4, respectively.

both steatosis measures (DSC% and DSP%) yield a low p
value in diagnosis group comparison study.

Additionally, we assessed the difference of steatosis
measurements across four histological steatosis percen-
tage grades by DSP%, DSC%, and ASP%, respectively.
The resulting p values of ANOVA and Tukey’s multiple
comparison tests for ASP%, DSP%, and DSC% are pre-
sented in Table 4. Note that both DELINEATE
steatosis measures demonstrate statistically significant
difference across grades, with the proposed steatosis
count measure DSC% presenting the least p value. The
box plot of this analysis with the use of DSC%
is demonstrated in Fig. 4f. Table 5 contains the optimal
threshold of DELINEATE Pixel, DELINEATE Count,
and Aperio PPC for differentiation of patient groups by
different steatosis grades assessed by an expert patholo-
gist. Table 5 shows the area under the receiver operating
curve (AUROC), sensitivity, specificity, and accuracy of
these methods. Additionally, there was no significant
difference for the AUROC across these methods in each
stage.

Segmentation improvement by enhanced deep
learning network

DELINEATE model used a dilated version of the standard
U-Net [12] model for enhanced steatosis segmentation.
Dilated convolution operation can reduce the down-
sampling operation and information loss, empowering the
network with an exponential receptive expansion. As
demonstrated in Fig. 2a, certain steatosis regions bounded
by green boxes in the middle column are missing from
segmentation due to the down-sampling operations in the
standard U-Net architecture. To compensate for such
information loss, we incorporated dilated convolutional
layers at the bottleneck block of U-Net model and managed

Steatosis Steatosis grade

Teaste 0vs 1-3 0-1vs23  02vs3

DSP%
Threshold 1.26 7.34 11.91
AUROC 0.992 0.977 0.930
(95% CI) (0.971-1.00) (0.938-1.00) (0.851-1.00)
Sensitivity ~ 96.80% 91.30% 92.30%
Specificity  100% 100% 82.60%
Accuracy 97% 94% 86%

DSC%
Threshold 0.0004145 0.0018375 0.002755
AUROC 0.977 0.990 0.983
(95% CI) (0.928-1.00) (0.970-1.00) (0.954-1.00)
Sensitivity  96.80% 91.30% 100%
Specificity  100% 100% 91.30%
Accuracy 97% 94% 94%

ASP%
Threshold ~ 7.45 11.89 13.48
AUROC 0.922 0.957 0.946
(95% CI) (0.819-1.00) (0.883-1.00) (0.880-1.00)
Sensitivity ~ 81.25% 91.30% 100%
Specificity ~ 100% 100% 78.20%
Accuracy 83% 94% 86%

to recover the missing steatosis regions with the dil-Unet
architecture. The improved segmentation results illustrated
in the right column in Fig. 2a well justifies the merit of the
use of dilated convolutional layers.

We present in detail the way to combine the steatosis
region and boundary prediction results with the third inte-
gration module in Methods Section. The top-right subfigure in
Fig. 2b presents a typical image region where a large area
(labeled by ‘1°) is falsely recognized as a steatosis component
by the steatosis region module. This false positive (labeled by
2’) is removed from the final prediction result by the fol-
lowing integration module. The removal of falsely segmented
regions by the third integration network further improves the
overall performance of the DELINEATE model.

Whole tissue analysis and visualization

We further extended our analysis on steatosis component
quantification to whole liver tissue images. A representative
whole tissue image region at a low image resolution is
presented in Fig. 5a (a) where multiple tissue components
are included. Each tissue component was extracted and
rotated in a way such that the area of the resulting tissue
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Input Whole-slide
Tissue Image with . ' )
Several Steatosis

(A)

Fig. 5 Steatosis component quantification in whole liver tissue
images. a Whole tissue steatosis prediction. (a) a low-resolution whole
slide liver image containing multiple tissue components; (b) one
complete tissue component extracted at a low resolution; (c) the
highest resolution tissue component extracted after rotation and
interpolation; (d) steatosis regions and the boundary masks in the
complete tissue component detected by DELINEATE model; (e), (f)
close-up views of two representative tissue regions in purple rectangles
in (d). b Block diagram of steatosis quantification in whole slide liver

bounding box was minimized, as illustrated in Fig. 5a (b).
With estimated tissue component location and rotation
angle at a low image resolution, each tissue component was
next extracted at the highest image resolution as depicted in
Fig. 5a (c). Each extracted whole tissue component at the
highest resolution was further partitioned into multiple
overlapping patches (512 x 512 pixels) with a buffer region
of 16 pixel distance on each side by MaRelA [26] frame-
work. Each patch was analyzed by the DELINEATE model
for steatosis segmentation and the resulting steatosis
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Overlapping Patch
Extraction

Patch-wise Steatosis
Prediction

Regions

Reassembled Patches
by MaRelA

o SvertapBing
Patches

Overlapping Steatosis Regions
Patches Using MaRelA (Zoomed View)

(d) (e) )

(€)

tissue images. It consists of high-resolution tissue component extrac-
tion, overlapped tissue region partitioning, steatosis segmentation by
DELINEATE model, and patch-wise steatosis segmentation assembled
by MaRelA. ¢ Steatosis segmentation assembled by different methods.
(a) typical four adjacent non-overlapping patches; (b) steatosis seg-
mentation with simple concatenation; (c) close-up views of steatosis
droplets with simple concatenation; (d) overlapping patches; (e) stea-
tosis segmentation assembled by MaRelA; and (f) close-up views of
assembled steatosis droplets by our proposed MaRelA.

prediction maps were assembled for each whole tissue
component by the MaRelA framework. One representative
steatosis segmentation result of a whole tissue component is
presented in Fig. 5a (d). Close-up views of two repre-
sentative regions (purple boxes) from this tissue component
are shown in Fig. 5a (e, f), where recognized steatosis
regions and boundaries are represented in red and green,
respectively. These typical visual results demonstrate the
efficacy of DELINEATE model for overlapped steatosis
droplet segmentation.
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The complete analysis procedure for each rotated whole
tissue component image at the highest resolution is pre-
sented in Fig. 5b. The overall steatosis prediction maps
were assembled from patch-wise prediction maps with
MaRelA. For comparisons, we extracted non-overlapping
patches from each whole tissue component as illustrated in
Fig. 5c (a) and combined the adjacent patch prediction
outputs with simple concatenation as depicted in Fig. 5c (b).
The end result in this way becomes much degraded as
demonstrated in Fig. 5c (c). Specifically, it is noticeable that
steatosis components distributed to neighboring patches are
not fully recovered. It is not rare to see broken, incomplete,
or misaligned boundaries of steatosis droplets crossing
patch borders. Some such examples are illustrated in Fig. 5c
(c) where problematic recovered boundaries are highlighted
by rectangles. By contrast, the MaRelA framework can help
assemble results in a much better way, as illustrated in

Fig. 5c (f).

Discussion
DELINEATE summary

Motivated by the strong feature representation capability
and remarkably superior performance of the recently
emerged deep neural networks, we have developed an end-
to-end deep learning-based model for overlapped steatosis
droplet segmentation and quantification with liver whole-
slide histopathology images. The overall model consists of
whole slide tissue extraction, color normalization, steatosis
region prediction, boundary detection, integrated prediction
map production, and post-processing. The developed
DELINEATE model is in sharp contrast to prior work on
liver steatosis quantification [9, 41, 43], as it does not
require any manual feature engineering and presents pro-
mising accuracy, robustness and efficiency for delineating
overlapped histology structures. Our study offers a new
avenue for histology phenotype information extraction
essential to clinical decision support. We provide a generic
multi-layer framework that can be extended to analyses of a
large set of histology structures with similar processing
principles. To support analysis of extremely large-scale
whole-slide histopathology images, we have proposed a
whole tissue component extraction method by estimating
each tissue component location and rotation angle at mul-
tiple image resolution levels. For accurate measurement and
better result visualization, we have also applied our
assembling framework developed in our previous work to
gracefully aggregate boundaries of steatosis droplets
crossing neighboring image patches. We have system-
atically validated the efficacy of our approaches and cor-
related DELINEATE derived steatosis quantification

measures with ground truth grading, pathologist measure-
ments, radiology readouts, and clinical data, leading to
multiple discoveries of high correlations.

The developed DELINEATE model is based on Deep
Neural Network (DNN) that consists of two layers proces-
sing visual information with different focuses. The first
layer has two parallel modules designed to extract multi-
scaled image texture information within steatosis regions
and on steatosis boundaries. The resulting visual hues from
these two sources are further integrated by the third learning
network that can make joint use of the perceptual infor-
mation from steatosis internal regions and boundaries to
delineate the missing or weak boundaries of overlapped
steatosis droplets. In the post-processing step, we detect
high curvature points on steatosis boundaries and assess
ellipse fitting quality with identified steatosis contours to
improve steatosis droplet recovery [27].

DELINEATE analysis consists of two phases, training
and testing. Our DELINEATE model only needs to be
trained once. After the model is trained, it can be used to
analyze new cases for testing. DELINEATE model can
generate patch-level prediction result in 0.26 s on average.
The average number of image patches per whole-slide
image is 1600 in our dataset. Our current experiments are
carried out on a machine with one CPU and one Graphical
Processing Unit (GPU). We expect the execution time cost
can be further significantly decreased to potentially less than
a minute for each whole slide image by multiple CPUs and
GPUs using parallel computing. For future clinical
deployment, DELINEATE can be scheduled to run in the
background and complete the analysis before a pathologist
reviews tissue slides.

Clinical significance

Analysis of the steatosis extent is important for clinical care
since systems that describe the severity of fatty liver disease
rely on an accurate quantification of the degree of steatosis
[1]. Hepatic steatosis is one of the most common incidental
findings with radiology imaging, which leads to further
patient evaluations in order to rule out liver diseases like
NAFLD. Health implications of hepatic steatosis have been
largely studied, and are associated with insulin resistance,
dyslipidemia, and a chronic low-grade inflammation.
Moreover, in transplantation, the graft survival is associated
with the fat percentage of the graft, since hepatic steatosis
increases the hepatocyte necrosis and impairs the regen-
eration. To date, liver biopsy remains an important infor-
mation source for the assessment of fatty liver disease and
other liver conditions. Steatosis droplets are accumulation
of fat in liver tissues and present varying shapes even within
a single tissue. Individual steatosis droplets are mostly cir-
cular in shape. However, the clumped steatosis regions have
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irregular shapes as the dividing boundaries for overlapped
steatosis droplets are often weak or even missing. Addi-
tionally, tissue regions of interest are often selected from
whole-slide images for clinical review by human patholo-
gists. Such review bias and analysis obstacle on clumped
steatosis regions limit quantification accuracy and impact
the clinical decision. Our study has explored a new com-
putational way to quantitatively measure overlapped stea-
tosis components in liver biopsies for better clinical support
of liver transplantation decision. The developed deep
learning-based model DELINEATE can analyze the whole
slide images in a definitive, robust, and consistent manner.
As only annotated steatosis regions are marked as fore-
ground in the training set, DELINEATE learns a large set of
low level characteristics unique to the steatosis regions.
Therefore, the fully trained model is able to selectively
target the steatosis regions. Our proposed method
DELINEATE can be a powerful addition to the current
pathology analysis pipelines, as it can provide automated
and precise analysis to complement standard pathological
reviews.

Model optimization

We have systematically investigated multiple model var-
iations at distinct stages and tested their performances
with comprehensive comparison experiments. The first
model U-Net+U-Net+U-Net consists of three U-Net
modules for region extraction, boundary detection, and
information integration. In addition, we have created the
second model U-Net+U-Net+FCN-8s by replacing the U-
Net module with FCN-8s at the integration layer. Neither
of these two models produces consistently promising
results evaluated by all metrics in Table 1. The third
model variation is prompted by the observation that the
boundary prediction results from U-Net module are
incomplete in most cases. As the total number of bound-
ary pixels is much less than that of pixels in steatosis
droplet regions, it results in a numerical challenge for the
network to converge in the training stage. Therefore,
we further replace the boundary module in U-Net+
U-Net+FCN-8s with Holistically-nested Neural Network
(HNN) [21, 33] for steatosis boundary prediction. The
resulting network variation U-Net+HNN+FCN-8s con-
sists of a U-Net module for steatosis region prediction, a
HNN for boundary detection, and a FCN-8s integration
network for region and boundary information synergy. As
the HNN can effectively recover boundary information
from multi-scale edge fields, U-Net+HNN-+FCN-8s
achieves the best overall segmentation performance. To
further improve the steatosis region mask prediction, we
have modified the standard U-Net module by stacking the
dilated convolution layers (depth =3) at the bottleneck
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block with the lowest resolution feature maps. This
extended U-Net module, named as dil-Unet, presents
superior performance to that of the standard U-Net, as
demonstrated in Fig. 2a. The resulting model variation
with dil-Unet is named as dil-Unet+HNN+FCN-8s. In
our comprehensive comparison study, we have also tested
the integration network FCN-4s with an additional layer
of skip connection introduced from pool2 for more
detailed semantic information. The performance of this
model dil-Unet+HNN+FCN-4s is comparable to that
of dil-Unet+HNN+FCN-8s, as suggested in Table 1.
Finally, we test with dilated FCN module dil-FCN using
atrous convolution at the convolutional layer 6 with
dilation rate 3 for the integration layer. The resulting
model dil-Unet+HNN-+dil-FCN, however, does not sub-
stantially improve recovery of the weak boundaries of
steatosis droplets in clumps. All these models are rigor-
ously evaluated by F-Score, Dice score and Hausdorff-
distance, with resulting performance listed in Table 1. By
comprehensive evaluations, dil-Unet+HNN+FCN-8s is
the best performing model compared to all other varia-
tions. This is confirmed with visual segmentation results
for overlapping steatosis droplets in Fig. 3. Both quanti-
tative and qualitative results of baseline experiments with
DELINEATE model, its network variations, and the state-
of-the-art deep learning-based segmentation methods
demonstrate the superiority of DELINEATE model to
others.

Parallel computation and result aggregation

Our study presents a generic analysis work flow to support
histology image analysis result assembly and visualization
for whole tissue microscopy images. As each liver whole-
slide histopathology image in our dataset contains several-
tissue needle biopsy components, we extract each whole
tissue biopsy image region by estimating each tissue com-
ponent location and rotation angle at multiple image reso-
lution levels. The resolution of the resulting image region
still remains overwhelmingly large. Therefore, we partition
each image region into overlapping patches for analysis.
The resulting steatosis contours in neighboring patches are
seamlessly assembled with the MaRelA framework
that gracefully handles such patch crossing steatosis dro-
plets with efficient spatial indexing based matching and
merging [26].

Discovery of a novel indicator for steatosis
measurement

With DELINEATE, the resulting quantitative steatosis
measures both at the pixel level and steatosis object level
from whole slide liver histopathology images of 36 children
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with the diagnosis of NAFLD are highly correlated with
liver tissue pathological grading, radiology readouts, and
patient clinical data, respectively. Importantly, the count of
recovered steatosis droplets, a promising novel indicator,
has enhanced correlation with results from histology review
on total and macrovesicular steatosis than pixel-level mea-
sures. Statistical tests with DELINEATE measures at pixel
and object levels between NAFL and NASH diagnostic
groups, and groups with and without lobular inflammation
produce statistically significant difference. In particular,
steatosis object-based measure demonstrates its strong dis-
criminative power in these tests. Through statistical tests,
DELINEATE steatosis count% (DSC%) is demonstrated as
a new promising indicator of histology steatosis profiles
predictive of hepatic steatosis grade. These strong correla-
tions and findings of DELINEATE derived steatosis mea-
sures with other dimensions of data from the same patient
cohort suggest its potential for enhanced clinical decision
support.

Method benefits

This steatosis quantitation algorithm can potentially serve as
an assistant in the routine steatosis assessment. As our
DELINEATE method enables steatosis object-level quan-
titation with recovered contours of individual steatosis
droplets in clumps, it enables steatosis measures from the
pixel to object level. Thus, DELINEATE allows for indi-
vidual steatosis size measure and research investigations
exploring new steatosis object-level morphology features
with diagnostic and prognostic value. Our developed
DELINEATE method can also alleviate inter- and intra-
observer variability in steatosis assessment. Once the
DELINEATE model is trained, it can be used as a tool to
improve agreement among pathologists and across multiple
clinical sites. Furthermore, the DELINEATE method is
fully automated. Leveraging parallel computation,
DELINEATE model can generate and aggregate steatosis
analysis results from whole slide images efficiently. We
have made the DELINEATE algorithm open source, which
can be modified, upgraded, and customized beyond what
can be done with commercial software. Finally, our new
algorithm can be readily integrated into existing open-
source or commercial software already prevalent in
clinical sites.

Limitations and future work

Although our study provides a new framework for quanti-
tative liver steatosis measures, there are some limitations to
be addressed in future. As manual annotations on over-
lapped steatosis droplets are time consuming, only very
limited number of tissue regions were included in the

training set. Additionally, the training set was composed
with randomly selected regions of interest and thus may
miss some representative steatosis droplets in clumps. As
steatosis droplets have three-dimensional morphology,
limiting our current analysis to sampled two-dimensional
tissue slides may result in large measure errors and sam-
pling bias. In future study, we will incorporate more
annotated tissue samples and explore methods that can
identify representative tissue regions for training. For more
precise steatosis measure, we plan to extend our analysis
from two to three-dimensional tissue space with serial liver
slides. In this study, we segment overlapping steatosis
droplets in liver tissues. As our proposed deep learning
method is generic to histology objects, we will extend our
method to segment other overlapping histopathology com-
ponents that can provide more insights on disease tissues.
To better support clinical liver disease diagnosis, we will
proceed with measuring morphometric and space organi-
zational features of segmented steatosis droplets. We expect
the resulting feature distributions derived from whole slide
tissues can be used to indicate liver disease severity
quantitatively.

As we use permanent sections of a patient cohort in this
study, we do not train the DELINEATE model with frozen
section slides enriched with image artifacts. In our future
studies, we plan to enhance our method to automatically
recognize frozen section artifact with similar appearance to
steatosis droplets. Additionally, we plan to extend our
analysis to accommodate other stains such as Periodic Acid
Schiff (PAS) stains with and without diastase for glyco-
genation assessment. As permanent sections in this inves-
tigation do not present strong microvesicular steatosis
components, this study is not designed to detect the
microvesicular steatosis. In our follow up study, we will
collect microvesicular steatosis cases for model training.
We plan to construct steatosis droplet size histograms to
determine the optimal cutoff size for microvesicular stea-
tosis, and link this with such outcome parameter as delayed
graft function after transplantation.

Data availability

All source codes and annotation data related to this paper
are available at GitHub [44]. We share image data in a
public repository [45].
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