Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PCP4/PEP19 downregulates neurite outgrowth via transcriptional regulation of Ascl1 and NeuroD1 expression in human neuroblastoma M17 cells

Abstract

Purkinje cell protein 4/peptide 19 (PCP4/PEP19) is 7.6 kDa peptide originally found in Purkinje cells. PCP4/PEP19 is a differentiation maker of Purkinje cells, where it functions as an antiapoptotic factor. Cerebral neuronal cells also express PCP4/PEP19, which may be related to neuronal cell survival. However, evidence suggests that PCP4/PEP19 may also be involved in neuronal differentiation. Here, we investigated the effects of PCP4/PEP19 expression on neuronal differentiation by analyzing neurite outgrowth, and expression of neuronal differentiation markers in cultured human neuroblastoma M17 cells. When PCP4/PEP19 expression was reduced by siRNA-mediated knockdown, neurite outgrowth was significantly increased. Among many differentiation markers tested, expression of NeuroD1 was increased, while that of Ascl1 was decreased upon PCP4/PEP19 knockdown. Furthermore, luciferase reporter assays revealed that PCP4/PEP19 knockdown upregulated NeuroD1 and downregulated Ascl1 expression, at the transcriptional level. These results suggest a new function of PCP4/PEP19, which suppresses neurite outgrowth and neuronal differentiation through the regulation of NeuroD1 and Ascl1 expression in M17 cells. Furthermore, immunohistochemical studies showed that PCP4/PEP19 localizes in the nuclei of human neuroblastoma cells. Therefore, PCP4/PEP19 may also be an intranuclear negative regulator of neuronal differentiation and may thus be a potential therapeutic target to promote cellular differentiation in human neuroblastoma.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Anti-PCP4/PEP19 antibody preparation, and effects of AtRA and siRNA effects on PCP4/PEP19 expression and proliferation of M17 cells.
Fig. 2: Neurite outgrowth and neuronal differentiation after AtRA treatment and PCP4/PEP19 knockdown monitored by tubulin immunostaining.
Fig. 3: Neurite outgrowth and neuronal differentiation after AtRA treatment and PCP4/PEP19 knockdown monitored by actin distribution.
Fig. 4: Morphometric analysis of neurite outgrowth.
Fig. 5: Effects of PCP4/PEP19 and AtRA on Ascl1 and NeuroD1 expression.
Fig. 6: Relation of PCP4/PEP19, Ascl1, and NeuroD1 expression in M17 and SH-SY5Y cells.
Fig. 7: Subcellular localization of PCP4/PEP19 in human neuroblastoma tissues and M17 cells.
Fig. 8: Schematic presentation of PCP4/PEP19 regulation of neural differentiation in neuroblastoma M17 cells.

References

  1. 1.

    Hockberger PE, Yousif L, Nam SC. Identification of acutely isolated cells from developing rat cerebellum. Neuroimage. 1994;1:276–87.

    CAS  Article  Google Scholar 

  2. 2.

    Ziai R, Pan YC, Hulmes JD, Sangameswaran L, Morgan JI. Isolation, sequence, and developmental profile of a brain-specific polypeptide, PEP-19. Proc Natl Acad Sci USA. 1986;83:8420–3.

    CAS  Article  Google Scholar 

  3. 3.

    Wei P, Blundon JA, Rong Y, Zakharenko SS, Morgan JI. Impaired locomotor learning and altered cerebellar synaptic plasticity in pep-19/PCP4-null mice. Mol Cell Biol. 2011;31:2838–344.

    CAS  Article  Google Scholar 

  4. 4.

    Mouton-Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, et al. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+)/calmodulin-dependent kinase II-δ activation in mouse models of Down syndrome. J Comp Neurol. 2011;519:2779–802.

    CAS  Article  Google Scholar 

  5. 5.

    Utal AK, Stopka AL, Roy M, Coleman PD. PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in Huntington’s disease. Neuroscience. 1998;86:1055–63.

    CAS  Article  Google Scholar 

  6. 6.

    Iwamoto K, Bundo M, Yamamoto M, Ozawa H, Saito T, Kato T. Decreased expression of NEFH and PCP4/PEP19 in the prefrontal cortex of alcoholics. Neurosci Res. 2004;49:379–85.

    CAS  Article  Google Scholar 

  7. 7.

    Bourdeau V, Deschênes J, Laperrière D, Aid M, White JH, Mader S. Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells. Nucleic Acids Res. 2008;36:76–93.

    CAS  Article  Google Scholar 

  8. 8.

    Hamada T, Souda M, Yoshimura T, Sasaguri S, Hatanaka K, Tasaki T, et al. Anti-apoptotic effects of PCP4/PEP19 in human breast cancer cell lines: a novel oncotarget. Oncotarget. 2014;5:6076–86.

    Article  Google Scholar 

  9. 9.

    Wang T, Satoh F, Morimoto R, Nakamura Y, Sasano H, Auchus RJ, et al. Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands. Eur J Endocrinol. 2011;164:613–9.

    CAS  Article  Google Scholar 

  10. 10.

    Kanamori T, Takakura K, Mandai M, Kariya M, Fukuhara K, Kusakari T, et al. PEP-19 overexpression in human uterine leiomyoma. Mol Hum Reprod. 2003;9:709–17.

    CAS  Article  Google Scholar 

  11. 11.

    Yoshimura T, Hamada T, Hijioka H, Souda M, Hatanaka K, Yoshioka T, et al. PCP4/PEP19 promotes migration, invasion and adhesion in human breast cancer MCF-7 and T47D cells. Oncotarget. 2016;7:49065–74.

    Article  Google Scholar 

  12. 12.

    Honjo K, Hamada T, Yoshimura T, Yokoyama S, Yamada S, Tan YQ, et al. PCP4/PEP19 upregulates aromatase gene expression via CYP19A1 promoter I.1 in human breast cancer SK-BR-3 cells. Oncotarget. 2018;9:29619–33.

    Article  Google Scholar 

  13. 13.

    Harashima S, Wang Y, Horiuchi T, Seino Y, inagaki N. Purkinje cell protein 4 positively regulates neurite outgrowth and neurotransmitter release. J Neurosci Res. 2011;89:1519–30.

    CAS  Article  Google Scholar 

  14. 14.

    Erhardt JA, Legos JJ, Johanson RA, Slemmon JR, Wang X. Expression of PEP-19 inhibits apoptosis in PC12 cells. Neuroreport. 2000;11:3719–23.

    CAS  Article  Google Scholar 

  15. 15.

    Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, et al. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-beta precursor protein and amyloid-beta deposition. J Biol Chem. 2004;279:20539–45.

    CAS  Article  Google Scholar 

  16. 16.

    Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci. 2015;72:1559–76.

    CAS  Article  Google Scholar 

  17. 17.

    Devanna P, Middelbeek J, Vernes SC. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Front Cell Neurosci. 2014;8:305.

    Article  Google Scholar 

  18. 18.

    Oikari LE, Okolicsanyi RK, Griffiths LR, Haupt LM. Data defining markers of human neural stem cell lineage potential. Data Brief. 2016;7:206–15.

    Article  Google Scholar 

  19. 19.

    Hollenhorst PC, Jones DA, Graves BJ. Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res. 2004;32:5693–702.

    CAS  Article  Google Scholar 

  20. 20.

    Yoshimatsu Y, Yamazaki T, Mihira H, Itoh T, Suehiro J, Yuki K, et al. Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. J Cell Sci. 2011;124:2753–62.

    CAS  Article  Google Scholar 

  21. 21.

    Shimada H, DeLellis RA, Tissier F. Neuroblastic tumours of the adrenal gland. In: Lloid RV, Osamura RY, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon, France: IARC; 2016. p. 196–203.

  22. 22.

    Andres D, Keyser BM, Petrali J, Benton B, Hubbard KS, McNutt PM, et al. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with trans-retinoic acid. BMC Neurosci. 2013;14:49.

    CAS  Article  Google Scholar 

  23. 23.

    Filograna R, Civiero L, Ferrari V, Codolo G, Greggio E, Bubacco L, et al. Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS ONE. 2015;10:e0136769.

    Article  Google Scholar 

  24. 24.

    Sharif S, Ghahremani MH, Soleimani M. Induction of morphological and functional differentiation of human neuroblastoma cells by miR-124. J Biosci. 2017;42:555–63.

    CAS  Article  Google Scholar 

  25. 25.

    Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE. 2011;6:e18472.

    CAS  Article  Google Scholar 

  26. 26.

    Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, et al. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev. 2011;25:930–45.

    CAS  Article  Google Scholar 

  27. 27.

    von Bohlen und Halbach O. Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res. 2011;345:1–19.

    Article  Google Scholar 

  28. 28.

    Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 2016;16:1259–72.

    CAS  Article  Google Scholar 

  29. 29.

    Kawamata H, Tachibana M, Fujimori T, Imai Y. Differentiation-inducing therapy for solid tumors. Curr Pharm Des. 2006;12:379–85.

    CAS  Article  Google Scholar 

  30. 30.

    Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999;86:364–72.

    CAS  Article  Google Scholar 

  31. 31.

    Jögi A, Vaapil M, Johansson M, Påhlman S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci. 2012;117:217–24.

    Article  Google Scholar 

  32. 32.

    Bernhardt EB, Jalal SI. Small cell lung cancer. Cancer Treat Res. 2016;170:301–22.

    Article  Google Scholar 

  33. 33.

    Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer. 2017;17:725–37.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the excellent technical assistance of Ms. Orie Iwaya and Ms. Mai Tokudome (Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akihide Tanimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics

The IHC studies using human tissues were approved by the ethics committees for clinical and epidemiologic research at Kagoshima University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kitazono, I., Hamada, T., Yoshimura, T. et al. PCP4/PEP19 downregulates neurite outgrowth via transcriptional regulation of Ascl1 and NeuroD1 expression in human neuroblastoma M17 cells. Lab Invest 100, 1551–1563 (2020). https://doi.org/10.1038/s41374-020-0462-z

Download citation

Search

Quick links