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Abstract
Developing prognostic biomarkers for specific cancer types that accurately predict patient survival is increasingly important
in clinical research and practice. Despite the enormous potential of prognostic signatures, proposed models have found
limited implementations in routine clinical practice. Herein, we propose a generic, RNA sequencing platform independent,
statistical framework named whole transcriptome signature for prognostic prediction to generate prognostic gene signatures.
Using ovarian cancer and lung adenocarcinoma as examples, we provide evidence that our prognostic signatures
overperform previous reported signatures, capture prognostic features not explained by clinical variables, and expose
biologically relevant prognostic pathways, including those involved in the immune system and cell cycle. Our approach
demonstrates a robust method for developing prognostic gene expression signatures. In conclusion, our statistical framework
can be generally applied to all cancer types for prognostic prediction and might be extended to other human diseases. The
proposed method is implemented as an R package (PanCancerSig) and is freely available on GitHub (https://github.com/
Cheng-Lab-GitHub/PanCancer_Signature).

Introduction

Cancer is a major cause of morbidity and mortality world-
wide, accounting for more than 8 million deaths each year
[1]. In the United States alone, an estimated 1.8 million new
cases will be diagnosed in 2020, and more than one-third of
these cases will succumb to the disease [2]. As a

multifarious disease, the prognosis of patients with a spe-
cific type of cancer varies substantially [3]. Consequently,
developing models for specific cancer types that accurately
predict patient survival using prognostic biomarkers is
increasingly important in clinical research and practice since
they optimize treatment options.

Currently, prognosis is predominantly predicted based on
clinical variables. The Tumor Node Metastasis (TNM) sta-
ging system has been developed for most solid tumors types
and is based on tumor size, regional lymph node status and
metastasis [4]. Although TNM staging is prognostic in many
cancer types, certain cancer stages have high variation in
terms of clinical outcomes, which limits the application of
this staging system in directing therapeutic practice. For
example, overall survival in stage III melanoma ranges from
93 to 32% depending on node involvement [5]. In addition,
for certain cancer types, few additional prognostic clinical
variables are available. In ovarian cancer, for example,
cytoreductory status is one of the few other clinical variables
utilized. The main treatment for this disease is surgery fol-
lowed by platinum-based chemotherapy [6]. Prognosis pre-
diction is primarily based on surgery status (or debulking),
which is classified as optimal for complete tumor resection or
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suboptimal for incomplete resection and predicts poor
prognosis for suboptimal cytoreductory status [7]. Thus,
clinical variables certainly play important roles in achieving
useful prognostic prediction. However, further improvement
can be anticipated by including additional information, such
as genomic features.

Genomic data, especially transcriptomic profiles, provide a
comprehensive characterization of the intrinsic molecular
features of tumor samples, making them promising tools for
predicting cancer prognosis [8]. Indeed, gene expression-
based signatures have been extensively explored and have in
some cases led to biomarkers that significantly improve the
prediction of patient outcome. For example, expression-based
tests such as MammaPrint or Oncotype DX can accurately
predict patient outcome in ER+ breast cancer patients and are
increasingly being implemented into clinical practice [9–11].
For many other cancer types, clinically relevant prognostic
signatures have been proposed as well. Two strategies are
generally utilized for creating genomic prognostic signatures:
some signatures are based on prior knowledge, including
signatures based on hypoxia-associated genes [12, 13], EMT
genes [14], or frequently mutated genes such as TP53 [15, 16]
and BRCA1 [17], whereas other prognostic signatures are
based on supervised selection of genes that are statistically
associated with patient prognosis [18–21].

In spite of the enormous potential of prognostic sig-
natures, proposed models have reached limited imple-
mentations in routine clinical practice [22]. For example, a
multitude of prognostic signatures has been developed for
ovarian cancer [23–25], but none have reach the clinic yet. In
general, proposed signatures tend to be validated through
cross validation or in a small subset of all available inde-
pendent datasets [26]. This results in low reproducibility in
new datasets and impedes the prognostic robustness needed
for clinical application, as noted in ovarian cancer, lung
cancer, melanoma, and other cancer types [26–28]. In addi-
tion, gene expression data generated by both microarrays and
RNAseq platforms should be amenable to signature appli-
cation. Thus, there is a need for a standardized framework to
develop prognostic gene signatures with high reproducibility
from gene expression data in a straightforward fashion.

In this study, we propose a generic, RNA sequencing
platform independent, statistical framework named whole
transcriptome signature for prognostic prediction (WTSPP)
to generate prognostic gene signatures. Our platform relies
on signature generation from a training dataset based on Cox
regression and consequent application of this signature in
multiple independent test datasets. To exemplify the utility of
our platform, we utilized TCGA data from ovarian cancer
(OV) and lung adenocarcinoma (LUAD) to define tumor-
specific prognostic signatures and systematically tested the
predictive power of these signatures in a comprehensive list
of independent tumor gene expression datasets with matched

patient survival information. Our OV signature outperformed
14 published gene signatures and was prognostic in all col-
lected datasets. In lung cancer, we could significantly predict
survival in almost all collected datasets, even after adjust-
ment of clinical variables. In conclusion, our statistical fra-
mework can be generally applied to all cancer types for
prognostic prediction and might be extended to other human
diseases. To facilitate future utility, we already defined
prognostic signatures for 13 cancer types based on the
TCGA and developed these signatures into the PanCancer-
Sig R package.

Materials and methods

Datasets and preprocessing

TCGA datasets for ovarian serous cystadenocarcinoma
(OV) and lung adenocarcinoma (LUAD) were obtained
from TCGA on FireBrowse (gdac.broadinstitute.org/).
These datasets included Level 3 RNAseq samples with
matched clinical information and provided RSEM normal-
ized gene expression for 20,502 genes. Matched one-
channel (Affymetrix) and two-channel (Agilent) microarray
OV datasets were also obtained from TCGA on FireBrowse
for cross-platform validation. The one-channel dataset was
log10 transformed and the two-channel microarray dataset
was log2 transformed. Additional gene expression datasets
were obtained from Gene Expression Omnibus as Series
Matrix files. Only datasets with more than 40 samples were
considered in our analysis. This resulted in the inclusion of
21 validation datasets (see Supplementary Tables 5 and 6).

Definition of signatures

Tumor-specific whole-gene signatures for prognostic pre-
diction (WTSPPs) were generated utilizing univariate Cox
regression models. In this study, we used the TCGA OV and
LUAD datasets to define OV and LUAD signatures,
respectively. For each dataset, a Cox regression model was
fit for each gene to evaluate its effect on overall survi-
val (OS). The proportional hazards assumption was checked
for each gene using the cox.zph function from the R survival
package. The Benjamini–Hochberg (BH)-adjusted p values
ranged from 0.29 to 1.0 for the OV signature. Three genes
(LCE4A, OR8U1, and SNORA36B) did not meet the pro-
portional hazards assumption at a BH-adjusted p value of
0.001. Since these genes comprised less than 0.02% (3/
20,501) of the gene weights and had very small weights
(0.0002 for each of the three genes), we assumed that their
influence on the final score would be negligible. We
assumed that each p value reflected the association of this
gene with overall survival and utilized log10 transformed
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p values as gene weights. Weights exceeding 10 were
trimmed to 10 if necessary to reduce the effect of outliers.
Subsequently, all transformed p values were scaled from 0 to
1 and this vector represented the initial weight profile (wp) in
which this scaled p value represented the weight (w) of each
gene (i). The wp was separated into a protective (wpp) and
hazardous (wph) wp, based on the hazard ratio of each gene-
specific Cox model; genes with hazard ratios < 1 were con-
sidered to be protective, whereas genes with hazard ratios >
1 were classified as hazardous. Gene weights of hazardous
genes in wpp were set to 0 and vice versa for protective
genes in wph. The resulting two wps, wpp and wph, repre-
sented the WTSPP. Identical steps were followed to generate
recurrence-free survival (RFS)-based signatures, but now
using RFS as the dependent variable instead of OS.

Calculation of prognostic scores

Prognostic scores (PSs) were calculated using the BASE
algorithm [29], which has been made available in prior
publications [30, 31]. BASE calculates the enrichment of
protective and hazardous genes for each patient, based on
the WTSPP and patient gene expression data. First, one-
channel microarray or RNAseq gene expression datasets
were median normalized by BASE, whereas two-channel
microarray datasets were not. Second, patient gene
expression profiles were ranked in a descending order.
Third, the distribution of two cumulative functions, the
foreground (f) and background (b) functions, were calcu-
lated separately for the protective (wpp) and hazardous
(wph) genes. These functions are given by:

f ðiÞ ¼
Pj

i¼1
jgiwijPn

i¼1
jgiwij

; 1 � j � n

bðiÞ ¼
Pj

i¼1
jgið1�wiÞjPn

i¼1
jgið1�wiÞj

; 1 � j � n

;

where the weight w and rank g of gene i are evaluated. To
obtain an enrichment score for protective genes in a patient
sample, weights from wpp were inputted into these functions
and a cumulative foreground and background distribution
was defined. In a scenario in which protective genes were
relatively highly expressed in a patient sample, the high
ranks gi and large contributions of gene weights (wi) to the
foreground distribution f(i) but low ranks gi and small
contributions (1−wi) to the background distribution b(i)
would increase f(i) more than b(i). The enrichment score of
all protective genes (PSp) was defined by the maximum
deviation of the foreground and background distributions
and PSp would thus be high if protective genes were
relatively highly expressed in a patient sample. The same
enrichment procedure was repeated 1000 times for each
sample with randomized patient expression profiles to

generate a patient-specific null distribution for PSp. For each
patient, the normalized PSp was then generated by dividing
PSp by the mean of the absolute value of the permuted,
randomized PSp values. An identical process was repeated
with the hazardous genes in wph to establish an enrichment
score for hazardous genes (PSh). Lastly, the final PS was
determined by subtracting PSh from PSp. This generated low
PSs for patients with enriched expression of hazardous genes
and high PSs for patients with predominant expression of
protective genes. Concordantly, high PS predicted good
prognosis and low PS predicted poor prognosis.

Survival analysis

Survival analyses were performed using the R “survival”
package. Log-rank tests were performed to evaluate OS or
RFS probabilities of PS-high and PS-low groups, using the
“survdiff” function. In addition, Cox proportional hazards
models were performed on continuous PS, using the
“coxph” function to determine the association with OS or
RFS. Reported p values were derived from each Cox pro-
portional hazards model and calculated using a two-sided
Wald test. Concordance indices were also determined by the
“coxph.” The “survfit” function was utilized to create
Kaplan–Meier plots that visualize differences in survival
probabilities.

Correlation analysis

The Spearman correlation coefficient (SCC) was reported
for all correlation analyses as the assumptions underlying
the Pearson correlation (i.e., normal distribution, homo-
scedasticity, or linearity) were not met. SCC was calculated
using the R function “cor.” All analyses were conducted in
R (version 3.4.2).

R package

An R package, “PanCancerSig,” has been made available to
facilitate the application of the presented prognostic sig-
natures. Users can input clinical gene expression datasets of
interest, calculate patient-specific PS, and perform survival
analyses. PanCancerSig is available on GitHub at: github.
com/Cheng-Lab-GitHub/PanCancer_Signature.

Results

WTSPP: a new statistical framework for predicting
cancer prognosis

WTSPP provides a generic statistical framework to define
prognostic signatures based on tumor gene expression data.
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In contrast to previous methods that focus on the selection
of prognostic genes, the prognostic signatures defined by
WTSPP contain all genes. A weight is assigned to each
gene based on its positive or negative association with
prognosis. These signatures are then used as a reference to
gauge the expression profiles of a new tumor dataset by
computing PSs for each patient. The PS is a statistical
summary that quantifies the relative expression of genes that
are associated with prognosis, i.e., highly weighted genes in
the prognostic signature. In general, a sample will have a
high PS when genes associated with good prognosis tend to
be highly expressed and genes associated with poor prog-
nosis are lowly expressed. Thus, although all genes are
included in the prognostic signature, the PSs of tumor
samples are driven by genes with the highest absolute
weights.

Application of WTSPP to prognostic prediction in
ovarian cancer

To demonstrate the utility and performance of WTSPP-
derived signatures, we utilized ovarian cancer as an
example due to the limited prognostic tools available for
this disease currently. We first developed a prognostic
gene signature based on the TCGA OV RNAseq dataset
(Table 1, Supplementary Tables 1 and 2). Gene Ontology
enrichment analysis indicated that genes with high posi-
tive weights (associated with prolonged survival) were
involved in immune responses, while genes with high
negative weights (associated with shorter survival) were
associated with extracellular matrix deposition (Supple-
mentary Table 3). As an initial validation of this signature,
we applied it to the original TCGA OV RNAseq data and,
as expected, the resulting PSs were significantly asso-
ciated with OS (p= 1E−17, Cox regression) (Supple-
mentary Table 4).

In addition to TCGA OV RNAseq data, we also
derived OV signatures from TCGA ovarian cancer gene
expression profiles measured by Affymetrix (one-channel
array) and Agilent (two-channel array) to examine the
applicability of an RNAseq-derived signature to

microarray platforms and vice versa. The signatures from
three independent platforms were similar with an average
SCC of 0.63 (Supplementary Fig. 1). Although the prog-
nostic performance of the three OV signatures were
comparable, we found that the signature derived from the
RNAseq dataset achieved the best prognostic ability
(Supplementary Table 4), presumably due to the superior
sensitivity of RNAseq platform.

We subsequently applied the RNAseq-derived TCGA
OV signature to a collection of six ovarian cancer micro-
array datasets from previous publications, each containing
at least 100 tumor samples (Supplementary Table 5). For
each dataset, we calculated PSs for all patients. Cox
regression analysis indicated that PSs were significantly
associated with OS (Fig. 1a) and/or RFS (Fig. 1b) in all
datasets (HR < 1, p < 0.05, Cox regression model), even
after adjusting for clinical variables (Table 2). Furthermore,
we stratified patients into PS-high and PS-low groups using
median PS as threshold and compared survival times. In all
six datasets, patients from the PS-high group exhibited
significantly longer OS than those from the PS-low group
(p < 0.05, log-rank test) (Fig. 1a). For the two datasets
(GSE9891 and GSE17260) with RFS information, we also
observed significantly longer RFS in the PS-high patient
groups (p < 0.05, log-rank test) (Fig. 1b). However, an RFS-
based signature was better able to predict RFS in two out of
three datasets, suggesting that prediction of recurrence
could be further improved with an RFS-based signature
(Supplementary Fig. 1d). Taken together, these results
indicate that the OV signature defined from TCGA RNAseq
data by our WTSPP framework is predictive of patient
prognosis in a platform independent manner. The PSs
resulting from this signature are predictive of survival in all
collected ovarian cancer expression datasets.

The OV signature provides additional prognostic
value over clinical variables

Clinical variables have been used to predict prognosis and
direct therapeutic strategies in ovarian cancer [32]. One of
the most utilized prognostic clinical variables is surgery

Table 1 Summary of OV and
LUAD TCGA datasets.

Cancer Samplea Eventb Event %b No. of samples with
RNAseq data

Univariate Cox regressionc

HR < 1 HR > 1 HR <
1*

HR >
1*

OV 591 298 51.7 302 11 37 0 0

LUAD 522 123 24.5 496 243 244 7 9

aSample refers to the number of samples with clinical information.
bEvent and percentage refer to the number and percent of death occurrences, respectively.
cNumber of genes indicated by hazard ratio (HR) > 1 or HR < 1 are significantly associated with overall survival
(p < 0.001). Number of genes indicated by HR > 1* or HR < 1* are significantly associated with overall survival
after multiple hypotheses correction using the Benjamini–Hochberg procedure (FDR < 0.001).
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status (optimal versus suboptimal) with suboptimal cytor-
eductory status predicting poor prognosis [7]. To examine if
our signature could provide additional prognostic informa-
tion to surgery status and other clinical variables in ovarian
cancer, we applied a multivariate Cox regression analysis
including our OV signature and several clinical variables
across 12 collected ovarian cancer datasets (Supplementary
Table 5). Here, datasets GSE9891 and E-MTAB-386 were
chosen as examples for illustration due to their complete
clinical information. Although surgery status was not
associated with survival (p > 0.05, Cox regression model),
high PSs were protective in both datasets and were the only

consistently significant variable associated with prognosis
(Fig. 2a, b).

As clinical variables have been suggested to be prog-
nostic in ovarian cancer, we wondered if our OV signature
could provide additional prognostic value. For each of the
12 ovarian cancer datasets, we calculated the concordance
index of a multivariate Cox model including clinical vari-
ables only (age, stage, grade, and surgery status), a uni-
variate Cox model including PSs only, and a multivariate
model including clinical variables and PSs. A comparison
between concordance indices (C indices) showed that our
signature indeed improved the prognostic ability of clinical

Table 2 Univariate Cox
regression and C indices using
PS as a continuous variable.

Study Sample sizea PS only PS+ Clin. variables

p value HR C index p value HR C index

TCGA 289 6.6E−12 0.92 0.66 1.5E−8 0.93 0.68

GSE9891 278 4.2E−9 0.97 0.7 4.6E−8 0.97 0.74

GSE32063 260 2.1E−3 0.88 0.6 0.01 0.9 0.64

GSE26712 185 1.1E−3 0.98 0.61 0.03 0.99 0.66

E.MTAB.386 129 2.3E−3 0.97 0.6 2.5E−3 0.96 0.63

PMID17290060 117 4.7E–4 0.97 0.66 7.4E−4 0.97 0.67

GSE17260 110 0.05 0.99 0.6 0.09 0.99 0.66

Clin. variables include all clinical variables (stage, grade, age, and/or debulking) available for each dataset
(see Supplementary Table 5).

PS prognostic score, HR hazard ratio, C index concordance index.
aSample size indicates number of gene expression samples used in analysis.

Fig. 1 The OV signature is predictive of patient survival in
six independent ovarian cancer gene expression datasets.
a Kaplan–Meier curves depicting overall survival (OS) probability
over time, ordered by sample size (n). b Kaplan–Meier curves
depicting recurrence-free survival (RFS) probability over time, ordered

by n. For all Kaplan–Meier curves, patients were dichotomized into
PS-high (red) and PS-low (blue) using median PS as threshold. LR-p
= p value of log-rank test, HR= hazard ratio, Cox-p= p value cal-
culated from the univariate Cox regression model in which PS is used
as the only variable.
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variables in all 12 ovarian cancer datasets (Fig. 2c).
Although clinical variables alone were prognostic as indi-
cated by an average C index of 0.57, our OV signature
performed slightly better, showing an average C index of
0.60 (p > 0.05, paired t-test). Adjusting our signature for
clinical variables further increased the prognostic perfor-
mance of our model (average C index= 0.65) and showed
significant improvement of predictive ability compared with
clinical variables alone (p= 1E−4, paired t-test). Thus, our
OV signature captured tumor characteristics not explained
by clinical variables and could significantly improve the
predictive ability of clinical variables in ovarian cancer.

Since PSs could substantially improve the collective
prognostic ability of clinical variables, we were curious if
PSs were associated with individual clinical variables. The
GSE9891 dataset was used as an example for illustration due
to its large sample size and rich clinical annotations. Ovarian
cancer staging is currently a major predictor of prognosis,
since 80% of late-stage ovarian cancer patients treated with
platinum-based therapies experience incurable recurrence
[32]. We indeed observed that patients diagnosed at later
stages (stages 3 and 4) had significantly lower PSs than
patients with early stage disease (stages 1 and 2, p= 0.004,
t-test) (Fig. 3a) and that lower PSs were associated with
recurrence (p= 0.01, t-test) (Fig. 3b). In addition, low PSs
were more often observed in patients with suboptimal
cytoreduction status compared with patients classified as
having optimal surgery status (p= 6E−4, t-test) (Fig. 3c).
We next stratified patients with optimal or suboptimal status
based on PSs. In both optimal and suboptimal patient
groups, patients with high PSs had significantly longer
survival than patients with low PSs (p= 6E−5, log-rank
test, HR= 0.42 for suboptimal, p= 4E−6, log-rank test,
HR= 0.33 for optimal) (Fig. 3d). Notably, patients with
optimal surgery status but low PSs had identical survival
probabilities as patients with suboptimal cytoreductory sta-
tus and high PSs. Similar results were observed in other
ovarian cancer datasets (Supplementary Fig. 2a–e). These

results indicate that our OV signature could improve the
prognostic ability of individual clinical variables.

Ovarian cancer is a heterogeneous disease and the TCGA
has identified four distinct molecular ovarian cancer sub-
types [33]. Each subtype presents itself with a different
prognosis [34]. Generally, patients with mesenchymal
(Mes) and proliferative (Pro) have poorer survival com-
pared with patients with differentiated (Dif) and immune
(Imm) molecular subtypes [34]. In concordance with this,
patients with Mes and Pro ovarian cancer subtypes had
significantly lower PS than patients with Dif and Imm
subtypes in two out of three datasets (Fig. 3e, Supplemen-
tary Fig. 2f, h). In addition, within ovarian cancer subtypes,
patients in PS-high groups had longer survival in three out
of four ovarian cancer subtypes, including Dif (p= 0.03,
log-rank test, HR= 0.5) (Fig. 3f), Imm (p= 0.02, log-rank
test, HR= 0.5) (Fig. 3g), and Mes (p= 0.02, log-rank test,
HR= 0.6) (Fig. 3h, Supplementary Fig. 2h, i). The same
trend was also observed in the Pro subtype, but this asso-
ciation did not reach statistical significance (p= 0.08, log-
rank test, HR= 0.5) (Fig. 3i), which might be due to a
smaller sample size, since the Pro subtype could be strati-
fied significantly in an independent dataset with a larger
sample size (Supplementary Fig. 2f, g). Thus, our OV sig-
nature can stratify molecular subtypes further based on PSs.

The OV signature outperforms previously published
ovarian cancer gene signatures

After showing that our OV signature has clinical relevance,
we wanted to define the robustness and performance of our
WTSPP framework. We assessed whether (1) TCGA is the
best dataset to generate signatures from, and (2) compared
the prognostic ability of our signature to published ovarian
cancer-specific gene signatures.

First, we derived prognostic signatures from each of the
11 collected ovarian cancer datasets by applying our
WTSPP framework to each dataset. We then evaluated the

Fig. 2 The OV signature
provides additional prognostic
value over clinical variables.
Forest plots depicting the
prognostic significance of PS
and clinical variables in (a) the
GSE9891 and (b) the E-MTAB-
386 dataset (multivariate Cox
regression model). c Heatmaps
of concordance indices (left) and
−log10 (p values) (right) of Cox
regression models including
clinical variables alone, PS
alone, and PS adjusted by
clinical variables in 12 ovarian
cancer datasets.
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prognostic ability of these signatures using C indices
(Fig. 4a). Although all datasets could be used to create
prognostic signatures, variability between the prognostic
abilities of signatures was observed. The TCGA-derived
signature had the best overall performance among the
12 signatures and performed well in almost all datasets
(Fig. 4a, left). The TCGA signature was followed in prog-
nostic ability by signatures derived from the GSE9891 and
GSE32063 datasets, each with an average C index of 0.59
and 0.58, respectively (Fig. 4a, right). There seemed to be a
trend between dataset sample size and prognostic ability,
where datasets with high sample sizes (e.g., TCGA and
GSE9891) tended to produce more robust prognostic sig-
natures, compared with datasets with lower sample size
(e.g., GSE14764 and GSE32063).

To assess the similarities between the 12 derived OV
signatures, we calculated the pairwise correlation between
each of the signatures and observed relatively low correla-
tions between datasets (Fig. 4b). This indicated that the
prognostic genes identified by different datasets generally
have low consistency. Despite this, the WTSPP framework
can still achieve consistent prognostic prediction across
different datasets.

Lastly, since several gene expression-based prognostic
signatures have been proposed in the literature for high-
grade ovarian cancer, we compared the prognostic ability of
our OV signature to published gene signatures. Waldron

et al. recently evaluated 14 prognostic signatures in publicly
available datasets [26]. We evaluated the performance of
our OV signature in the same datasets and conducted paired
t-tests on the C indices of our signature and those reported
by Waldron. Our signature outperformed all 14 published
OV signatures reported in the review, as judged using the
t-statistic, which indicated the direction of higher con-
cordance scores, higher t-statistic meaning higher con-
cordance scores produced by our OV signature (Fig. 4c).
The largest difference in prognostic ability was observed
with the Konstantinopoulos signature, which was clearly
outperformed by our signature (p= 1E−4, paired t-test).
Interestingly, our signature performed slightly better than a
published TCGA-derived signature. This TCGA signature
was derived from a TCGA OV microarray dataset and
adapted a similar Cox regression approach but selected the
most significant genes to create a signature, rather than
the entire transcriptome [33]. This finding confirmed the
superiority of TCGA data in defining prognostic signatures.
Thus, our TCGA-derived OV signature outperformed all
evaluated published signatures for ovarian cancer.

Application of WTSPP to prognostic prediction in
lung adenocarcinoma

To exemplify the potential use of the WTSPP platform
in other cancer types, we extended our analysis to

Fig. 3 The OV signature can be used to stratify individual clinical
variables. a Box plot of PSs in samples from early (1 and 2) and late
stages (3 and 4), Wilcoxon rank-sum test. b Box plot of PSs com-
paring samples with nonrecurrent and recurrent events, Wilcoxon
rank-sum test. c Box plot of PSs in samples classified as optimal (Opt)
and suboptimal (Sub), Wilcoxon rank-sum test. d Kaplan–Meier plot
depicting survival probability of optimal and suboptimal patients

stratified by high PS or low PS (based on median PS), log-rank test.
e Box plot of PS in differentiated (Dif), immune (Imm), mesenchymal
(Mes), and proliferative (Pro) OV subtypes, Wilcoxon rank-sum test.
Kaplan–Meier plots depicting survival probability of PS-high and PS-
low samples in (f) differentiated, (g) immunoreactive, (h) mesenchy-
mal, and (i) proliferative OV subtypes, log-rank test.
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LUAD. We used the LUAD TCGA dataset (Table 1) to
generate a prognostic signature and applied the signature
to a collection of lung adenocarcinoma microarray data-
sets from previous publications (Supplementary Table 6).
For each dataset with at least 40 samples, we calculated
PSs for all patients. Cox regression analysis indicated that
PSs were significantly associated with overall survival in
eight out of ten independent datasets (Fig. 5a, Supple-
mentary Fig. 3a) (HR < 1, p < 0.05, Cox regression
model). Furthermore, by stratifying patients into PS-high
and PS-low groups using median PS as threshold,
patients in the PS-high group exhibited significantly
longer OS than those from the PS-low group (p < 0.05,
log-rank test) (Fig. 5a). In addition, our signature was
also predictive of RFS in three out of four datasets
(Supplementary Fig. 3b). Datasets c00182 and
GSE31210 provided extensive clinical information,
which we utilized to preform multivariate Cox regression
including PSs as a predictor. We observed that PSs are

still prognostic in both datasets, even after adjusting for
clinical variables such as stage, age, and smoking status
(Fig. 5b). Taken together, these results indicate that the
LUAD signature defined from TCGA RNAseq data by
our WTSPP framework is predictive of patient prognosis
in independent datasets.

Discussion

Considerable effort has been devoted to understanding
transcriptional deregulation in cancer. Consequently, a large
number of prognostic signatures have been proposed based
on gene expression levels, with varying levels of prognostic
ability. However, a prognostic platform that can generate
prognostic signatures on the pan-cancer level has been
lacking. In this study, we presented a prognostic framework
that generates cancer-specific signatures and evaluated the
OV and LUAD signatures extensively.

Fig. 4 The OV signature
outperforms 14 published
ovarian cancer-specific gene
signatures. a Left: concordance
matrix with signatures derived
from each dataset (horizontal
labels) and applied to each other
dataset (vertical labels).
Numbers indicate C indices.
Black panels indicate self-
concordance, which was
excluded in all averages. Right:
box plot of C indices displayed
in rows of the concordance
matrix. Vertical back lines
indicate median including self-C
index, red lines indicate average
excluding the self-C index,
outliers not indicated.
b Correlation matrix of
prognostic genes across datasets
based on the transformation
−I(HR < 1) × log10 (p value) for
each gene in the signatures,
where I indicates the indicator
function. SCC = Spearman
correlation coefficient. c T
statistics of C indices reported in
Waldron et al. [26] compared
with our TCGA-based C indices
(paired t-test). Dashed line
indicates cutoff for significance
of p < 0.05.
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Various proposed prognostic signatures are created by
selecting a number of highly associated mRNA transcripts
as determined by a method of preference, or by the inclu-
sion of genes known to take part in a relevant biological
process. The key assumption of these studies is that prog-
nosis can be captured by a relatively small number of genes.
However, as we have shown here, a much larger number of
transcripts may be involved in tumor prognosis prediction,
with each individual gene having a weak association with
patient outcome. As an example, none of the genes in the
OV signature were significantly associated with prognosis
after multiple testing correction (Table 1). We did attempt to
reduce the prognostic signatures to contain a smaller num-
ber of genes by only including the top x% prognostic genes,
where x was ranged from 90 to 20 (data not shown). Sig-
natures were relatively stable in predicting survival when
excluding up to 50% of the genes, but the C indices dropped
when excluding more genes. In addition, the complete
signature preformed best in the majority of dataset and the
smallest variance in C indices was observed with
the complete signature. In addition, when comparing the
prognostic genes among ovarian cancer signatures (Fig. 3c),
we observed heterogeneity between signatures. By using a
rank-based approach that includes all genes, we are still able
to capture enough prognostic genes to predict prognosis.
Thus, the inclusion of all genes in our prognostic signatures
generates a robust framework.

Using ovarian cancer as an example, we showed that
our OV signature captures tumor characteristics that

cannot be accounted for by clinical variables. Importantly,
clinical variables can further enhance the predictive power
of our signature. Multiple individual clinical variables
were associated with PSs, where high-PS predicted lower
stage, nonrecurrence, optimal debulking, and less
aggressive ovarian cancer subtypes. PS could also further
separate optimal and suboptimal debulking groups,
showing that patients with suboptimal cytoreduction sta-
tus and high PS had a similar prognosis as optimal
cytoreductory patients with low PS. These findings are of
unique importance, as TMN staging and cytoreductory
status are currently the only prognostic indications for
ovarian cancer [32]. Notably, our OV signature out-
performed 14 published prognostic ovarian cancer sig-
natures, indicating the strength of our WTSPP framework
in generating prognostic signatures. In addition, applica-
tion of the framework in a different cancer type,
lung adenocarcinoma, showed a similar association
with prognosis, indicating the extended application of our
prognostic framework, as it can be used to generate
prognostic signatures for multiple cancer types.

The WTSPP framework generates RNA sequencing
platform-independent signatures, which can be applied to
RNAseq, one-channel and two-channel microarray data-
sets without modification (Supplementary Table 3). This
is an important aspect, because the difference in sensi-
tivity and data distribution between these two techniques
results in an incompatibility of analysis methods and
hinders the utility of applications designed for certain

Fig. 5 The LUAD signature is predictive of patient survival
in independent lung adenocarcinoma gene expression datasets.
a Kaplan–Meier curves depicting overall survival (OS) probability
over time, ordered by sample size (n). b Forest plots showing the
results of multivariate coxph model including all variables depicted.

For all Kaplan–Meier curves, patients were dichotomized into PS high
(red) and PS low (blue) using median PS as threshold. LR-p= p value
of log-rank test, HR= hazard ratio, Cox-p= p value calculated from
the univariate Cox regression model in which PS is used as the only
variable.
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platforms [35]. We showed the superiority of using
RNAseq TCGA data over other published datasets
(Fig. 3a). This superiority is likely due to at least two
reasons: (1) RNAseq is more sensitive than microarray
studies and generates more appropriate weights for the
signature; and (2) the number of genes is higher in
RNAseq datasets, which captures tumor characteristics
better than microarray datasets that contain a more limited
number of genes. Thus, we show that TCGA data have
prognostic value and can be at the basis of robust sig-
natures that are prognostic in independent datasets.

Although our study proposes a new prognostic frame-
work, several limitations are noted here. First, our analysis
was conducted retrospectively. To validate the clinical uti-
lity of our signatures, they should be tested in a prospective
manner under conditions that simulate clinical application
of the signature to determine whether the use of the sig-
nature results in patient benefit. Second, most subjects in
TCGA received standard treatments, which might limit the
use of our signature for prognostic prediction for patients
treated with newly developed treatments, such as immu-
notherapy or targeted therapies. Third, we utilized OS to
determine a gene’s association with prognosis in TCGA
datasets, however, disease-specific survival would likely
improve the prognostic accuracy of our framework. Finally,
our framework only assesses mRNA expression levels,
which might not capture all prognostic variables present in a
tumor. Additional omics technologies could be added to our
signatures to improve prediction accuracy.

In conclusion, we have established a generic framework
that has been well validated and can easily be applied to
other datasets. In addition, WTSPP can be further extended
to other diseases. We have made an R package available to
facilitate the use of our signatures.
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