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Abstract
Real-time tissue classifiers based on molecular patterns are emerging tools for fast tumor diagnosis. Here, we used rapid
evaporative ionization mass spectrometry (REIMS) and multivariate statistical analysis (principal component analysis–linear
discriminant analysis) to classify tissues with subsequent comparison to gold standard histopathology. We explored whether
REIMS lipid patterns can identify human liver tumors and improve the rapid characterization of their underlying metabolic
features. REIMS-based classification of liver parenchyma (LP), hepatocellular carcinoma (HCC), and metastatic
adenocarcinoma (MAC) reached an accuracy of 98.3%. Lipid patterns of LP were more similar to those of HCC than to
those of MAC and allowed clear distinction between primary and metastatic liver tumors. HCC lipid patterns were more
heterogeneous than those of MAC, which is consistent with the variation seen in the histopathological phenotype. A
common ceramide pattern discriminated necrotic from viable tumor in MAC with 92.9% accuracy and in other human
tumors. Targeted analysis of ceramide and related sphingolipid mass features in necrotic tissues may provide a new
classification of tumor cell death based on metabolic shifts. Real-time lipid patterns may have a role in future clinical
decision-making in cancer precision medicine.

Introduction

The inherent heterogeneous nature of cancer renders
individual patient’s response to clinical interventions often
unpredictable [1]. Cancer precision medicine aims to
improve treatment outcome through precise tumor char-
acterization and tailoring clinical interventions to individual
patient’s needs [2]. This may be achieved by studying the
biological complexity related to tumor heterogeneity at
multimolecular levels including genomics [3], proteomics
[4], and metabolomics [5]. Patients may benefit from a real-
time, cost-effective, and implementable technology for
high-throughput tumor characterization. Such a technology
could complement the quest for biological understanding
and multi-omics integration in precision medicine, [2, 6, 7],
which would lead to a more straightforward clinical
implementation.

As a subclass of metabolites, lipids are known to be
directly involved in defining the tumor phenotype [8]. Their
bioactive roles have been studied in detail over the past
decades, including in cancer research [9, 10]. Lipid meta-
bolism reprogramming has been recognized as one of the
cancer hallmarks and as a potential therapeutic target [11].
However, cancer precision medicine has not yet considered
the full diagnostic potential of lipid metabolism [12, 13].
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The lipid metabolism underlying metastasis and resistance
to cell death may predict disease progression and response
to therapy, critical factors for informed clinical decisions.

With the development of real-time intraoperative tools to
assist in situ surgical diagnosis, lipid patterns have recently
gained interest as tumor-specific metabolic phenotypes [14].
These new tools are able to distinguish tissue constituents
based on their physicochemical properties creating tissue-
specific lipid patterns for intraoperative tissue classification
[15–17]. These real-time classifiers provide intraoperative
information about the disease without elaborate processing
and expert knowledge, such as required for histopathology,
the gold standard for tumor diagnostics. They may, on the
one hand, reduce the need for perioperative tissue diag-
nostics by frozen tissue section analysis and, on the other
hand, may provide additional clinically relevant information
which cannot be obtained from a hematoxylin- and eosin-
stained frozen tissue section. Rapid evaporative ionization
mass spectrometry (REIMS) analysis is one of the analytical
approaches that recently emerged as a tool for intraoperative
tissue typing [14–17]. In particular, the combination of
surgical handpieces (e.g., diathermia or laser) with REIMS
analysis has shown potential to assist surgical tumor
resection and in situ tumor diagnostics [18, 19]. REIMS
technology can analyze tissue vapors/aerosols and establish
their mass spectrometric patterns within a couple of seconds
[20]. The thermal disintegration of the tissue produces
singly charged molecular ions, a majority of which are
lipids. Once ionized, lipids are separated based on their
mass-to-charge (m/z) ratio and their relative abundance is
measured. This allows the detection of tissue-specific lipid
patterns that can be classified in real time based on pre-
established lipid patterns libraries. So far, real-time tissue
classifiers have been mainly applied to intraoperative
diagnostics. However, lipid patterns generated from tumor
tissues may contain information relevant for clinical deci-
sions beyond tissue diagnosis in the operating room.

The lipid patterns may provide insight into the origin of
the tumor metastasis. Metastases are the most common cause
of cancer death [13] and the liver is one of the main sites of
tumor metastases. The invasion-metastasis cascade is a
multistep process [21]. Therefore, tumor metastases in the
liver are expected to share common molecular alterations,
which are different from those of primary liver tumors. In
the current study, we compared the lipid patterns of normal
liver parenchyma (LP), primary liver tumors (hepatocellular
carcinoma (HCC)), and colorectal and breast cancer liver
metastases (metastatic adenocarcinoma (MAC)). We hypo-
thesized that the lipid patterns of LP are more similar to that
of HCC than that of MAC and that the lipid patterns of
MAC are more homogenous than that of HCC.

The implication of bioactive lipids, and especially cer-
amides, has been extensively reported in tumor cell death

mechanism and treatment response [9, 22–24], we therefore
included an investigation into the change of lipid patterns
between viable and necrotic tumor in our current study
hypothesizing that the presence of ceramides can dis-
criminate between viable and necrotic tumor tissue.

Materials and methods

Patients

This study included patients who underwent surgery at
Maastricht University Medical Center (MUMC+) between
November 2017 and February 2020. Patients older than 18
years were eligible if they were scheduled for partial hepa-
tectomy for removal of a liver tumor or scheduled for removal
of a soft tissue tumor. The study was approved by the Medical
Ethics Committee of MUMC+ (approval number METC
16-4-168) and conducted according to the revised version of
the Declaration of Helsinki. Written informed consent was
obtained from each patient prior to study participation.

Tissue procurement

The resection specimen was transferred fresh from the
operating theater to the pathology department as soon as
possible. A pathologist dissected normal and tumor tissue
surplus to diagnostic needs from the resection specimen for
the present study. Tissue slices were used either for
immediate REIMS analysis or frozen in liquid nitrogen and
stored at −80 °C for lipid identification.

REIMS analysis for tissue classification

After collection, fresh tissue slices were placed on a low-
lint, high absorbency and chemically inert wipe (Kimtech,
Kimberly Clark), wet with deionized water, and placed on a
silicone return electrode (Erbe) (see Supplementary
Fig. S1). All experiments were performed in a laminar flow
biosafety cabinet (Biowizard Xtra Line, Kojair Blue Series
Technologies).

The tissue slides were sampled using a monopolar
handpiece (Waters Research Center, Hungary) equipped
with a 1-mm-diameter needle electrode connected to a
commercially available electrosurgical heat-generator
(Force FX, Covidien). Multiple locations within the nor-
mal and tumor areas were sampled. Cut and pure modalities
were used to cauterize the tissue with a power set between 8
and 25W depending on the sample size and the signal
quality. The generated electrosurgical vapors were aspirated
into a REIMS interface (Waters Corporation, Wilmslow,
UK) via a 3-m-long polytetrafluoroethylene tubing, con-
necting the surgical handpiece and the REIMS interface.
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The REIMS interface was coupled to a mobile Xevo G2-XS
quadrupole-time-of-flight mass spectrometer (Q-ToF sys-
tem, Waters Corporation, Wilmslow, UK).

An aspiration system (ZERO SMOG 2, Weller FT) was
set-up to increase the aspiration of the vapors obtained by
the venturi tube in the mass spectrometer to avoid
the spread of electrosurgical vapors in the laboratory. A MS
quality grade isopropanol (Biosolv, Honeywell) solvent
was used as a matrix [25] and infused at 150 μl/min, con-
taining Leucine-Enkephalin (Leu-Enk, Sigma-Aldrich)
in solution for lock-mass correction. The concentration of
Leu-Enk ranged from 0.1 to 1 ng/μl and was adjusted on the
intensity of the infused [LeuEnk–H]− mass peak before
tissue analysis. The tissue vapors and the solvent solution
were mixed together in a stainless steel capillary toward a
heated coil. The electrosurgical vapors were analyzed by
REIMS in negative ionization mode and sensitivity mode.
Acquisitions were performed over the mass range m/z
100–1500. Instrument calibration was performed or
checked on sodium formate before tissue analysis. Scan
time was set to 1 s. The mass resolution for [LeuEnk–H]−

was around 50,000.

Histopathological review

After REIMS analysis, the remaining tissue was fixed in
formalin (Unifix, Klinipath) and embedded in paraffin using
a standard protocol. Tissue blocks were sectioned at 5 µm
thickness on a microtome (Leica). Hematoxylin- and eosin-
stained sections were prepared for histopathology review.
During the review, the tissue surrounding the tissue defect
from the REIMS procedure was analyzed to predict the type
of the evaporated tissue (example in Supplementary
Fig. S1C). Representative histology pictures for figures
were taken on a microscope by a histopathologist.

REIMS data analysis

REIMS raw data were imported in the “abstract model
builder” software AMX version 0.9.2092.0 (Waters
Research Center, Budapest, Hungary). REIMS tissue scans
were selected based on their intensities to create a single
profile for each sampling spot (one spectrum per sampling
spot). For each model, advanced 0.1 binning was selected.
Model preprocessing included lock-mass correction, back-
ground subtraction, and normalization.

The lipid patterns were subjected to multivariate
statistical analysis using a combination of both principal
component analysis and linear discriminant analysis
(PCA–LDA) as follow:

(1) Unsupervised principal component analysis (PCA)
was used for data reduction and to provide an

overview of the variance of the lipid patterns included
in the model; PCA analysis was performed on a given
mass range or on specified mass features of the lipid
patterns (as detailed for each analysis).

(2) Supervised linear discriminant analysis (LDA) was
used to further optimize the separation between
different tissue types by means of projected classes
and to reduce the variance within each projected class
used for pattern recognition (and therefore for tissue
classification).

We compared the tissue classification predicted
by PCA–LDA based on the REIMS lipid patterns to the
histopathological classification to calculate the accuracy
of the lipid patterns based classifier. Cross-validation
was performed following a leave-one patient-out classi-
fication method. Confusion matrices were generated to
assess the accuracy of the tissue classification. PCA score
plots provided an overview of the variance of the lipid
patterns. Notably, as unsupervised analysis method, the
PCA score plots did not consider the histopathological
classification, while the LDA added that information to
the classifier.

Data matrix from the MAC viable tumor vs. MAC
necrosis model was extracted from AMX in Excel and
individual mass feature intensities were exported into
MetaboAnalyst [26] for statistical analysis as unpaired
samples and peak intensity table. No missing values were
detected. No data filtering, no sample normalization, no
data transformation, and no data scaling were performed.
Unequal variance and nonparametric test were selected for
univariate analysis by t-test (p value) and box plot to
confirm the significant intensity differences between two
tissue conditions.

REIMS analysis for lipid identification

Lipid identification was based on mass accuracy and MS/MS
fragmentation. A calibration or a check of the calibration of
the instrument REIMS Q-TOF was performed before tissue
analysis on the mass range m/z 100–1500 on sodium formate
in negative ionization mode. REIMS tissue patterns were
corrected on lock-mass deprotonated leucine-encephalin
[LeuEnk–H]− at m/z 554.2615 and the quality of the calibra-
tion was checked on the deprotonated leucine-encephalin dimer
[2LeuEnk–H]− at m/z 1109.5302 of the background signal
between the tissue samplings. Tandem mass spectrometry
experiments were performed on Xevo G2-XS QToF (Waters
Corporation, Wilmslow, UK) by collision-induced dissociation
with argon gas. Experimental exact masses using external lock-
mass correction and fragmentation patterns were compared to
online database ALEX123 lipid calculator [27] and reference
literature [28–30]. In addition, for chlorine adducts isotope
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pattern distributions were checked and compatible with the
presence of chlorine in the formula.

Desorption electrospray ionization—mass
spectrometry imaging (DESI-MSI) analysis for lipid
identification and for lipid in situ distribution

A tissue block of one tumor sample was taken out of the
low temperature freezer, sectioned on a cryotome (Microm)
at 8 μm thickness. Section was thaw mounted on a regular
histology slide (Superfrost, VWR) and stored in a low
temperature freezer until further usage. Before DESI-MSI,
the tissue section was dried in a desiccator for 20 min.
DESI-MSI experiment was performed on a DESI source
coupled to a Xevo G2-XS QToF (Waters Corporation,
Wilmslow, UK). Solvent was methanol:water (Biosolv) in
ratio 98:2. Inlet capillary was heated to approximately 500
degrees Celsius. Acquisition was performed in negative
ionization mode, sensitivity mode, over the mass range m/z
50–1800 at 50 × 50 μm2 pixel size, with a flow rate of 2 μl/
min for one scan per second. After experiment, the tissue
section was stained by hematoxylin and eosin, scanned with
a Mirax Desk digital slide scanner (Zeiss), and annotated by
a liver pathologist.

MS analysis for lipid identification

For identification based on mass accuracy, a calibration of
the instrument REIMS Q-TOF was performed before tissue
analysis with sodium formate in negative ionization mode.
REIMS spectra were corrected on lock-mass deprotonated
raffinose m/z 503.1606 [M–H]−. Experimental exact masses
were tested on ALEX123 lipid calculator [27]. Tandem mass
spectrometry experiments were performed on Xevo G2-XS
QToF (Waters Corporation, Wilmslow, UK) by collision-
induced dissociation with argon gas. Fragmentation patterns
were compared to reference literature [29, 30].

Results

To study the two hypotheses, we used ex vivo REIMS
analysis of electrosurgical vapors to establish the lipid
patterns from multiple different locations of fresh resected
tissues from 56 patients who had surgery for tumor resec-
tion (Supplementary Fig. S1A, B), including 16 primary
liver cancer (Supplementary Table S1) and 36 liver metas-
tases (Supplementary Table S2). In total, 2424 lipid patterns
were generated with subsequent histopathological tissue
review to build a library of tissue-specific lipid patterns
(Supplementary Fig. S1C). Details regarding the library of
lipid patterns per tissue type and per patient can be found
in Supplementary data (Supplementary Fig. S2 and

Supplementary Tables S1–3). Details regarding the clinical
and pathological information of the patients included in the
study can be found in Supplementary data (Supplementary
Tables S4 and 5).

Lipid patterns classify liver parenchyma and liver
tumors

To test the first hypothesis, we studied the classification of
LP, primary liver tumor (i.e., HCC), colorectal and breast
cancer liver metastases (i.e., MAC). The overall accuracy
of the classification of HCC and LP predicted by the
PCA–LDA analysis of REIMS lipid patterns compared to
the histopathological classification was very good (96.8%)
but slightly lower than the overall accuracy of classifica-
tion of MAC and LP (99.4%) (Supplementary Tables S6
and 7). The classification of LP, HCC, and MAC reached
98.3% accuracy (Table 1). The classification between
HCC and MAC reached 97.4% accuracy (Supplementary
Table S8). These results demonstrate the ability of the
lipid pattern library to predict the tissue class with good
accuracy. In addition, these results indicate PCA–LDA-
based analysis of lipid patterns appears to be better in
recognizing MAC than HCC. Representative lipid pat-
terns and pseudo-LDA score plots are shown in Supple-
mentary Fig. S3A–G.

Next, we used the PCA score plots to evaluate the
variance of the lipid patterns used for the predicted clas-
sification before supervised statistical analysis by LDA.
On the PCA score plots with only two tissue classes, HCC
and LP lipid patterns were relatively close to each
other (Fig. 1A), whereas MAC and LP were relatively
well separated (Fig. 1B). Figure 1C supports these
observations showing that LP, HCC, and MAC lipid
patterns were ordered and aligned along the PC1 axis

Table 1 Confusion matrix for the classification of liver parenchyma
(LP), hepatocellular carcinoma (HCC), and metastatic adenocarcinoma
(MAC) by rapid evaporative ionization mass spectrometry (REIMS)
generated lipid patterns. The tissue classification provided by the
histopathologist was used as actual class. Classification of 1743 lipid
patterns (1092 LP, 534 HCC, 117 MAC) generated from 50 patients
using 55 PC dimensions, a mass range m/z 600–900 resulted in
30 outliers. The overall accuracy by lipid pattern was 98.3%, ranging
from 89.7 to 98.8% and was highest for LP.

LP HCC MAC
Actual LP 98.8% 0.3% 0.2%
Class HCC 4.3% 93.4% 0.2%

MAC 0.9% 0.0% 89.7%

Overall accuracy

98.3 % 

Predicted Class
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(PC1 loading plot and suggested identification of some
mass features in Supplementary Fig. S3H and Supple-
mentary Table S12). Based on these visual assessments,
lipid patterns are more similar between LP and HCC than
between LP and MAC.

We included representative histopathological pictures of
the three tissue types, used to define the actual class
(Fig. 1D–F). While LP and HCC are both mainly composed
of hepatocytes and hepatocyte-derived malignant cells,

MAC is composed of malignant epithelial cells originating
from the colorectal or the breast primary tumors. The his-
topathological phenotype of HCC was more similar to that
of LP than that of MAC supporting the lipid pattern
findings.

In summary, REIMS lipid patterns were able to distin-
guish between LP, HCC, and MAC and dispersion of the
lipid patterns seems to be associated with differences in the
histopathological phenotypes.

Fig. 1 Principal component analysis (PCA) score plots of the lipid
patterns of liver parenchyma (LP), hepatocellular carcinoma
(HCC), and metastatic adenocarcinoma (MAC) and representative
histology. A PCA score plot (PC1 24.4%, PC2 16.9%) of 818 patterns
(284 LP and 534 HCC) generated on tissues from 16 patients to dif-
ferentiate HCC from LP. B PCA score plot (PC1 31.3%, PC2 16.5%)

of 925 patterns (808 LP and 117 MAC) generated on tissues from 34
patients to differentiate MAC from LP. C PCA score plot (PC1
describes 25.6% of the total variance of the data, PC2 14.9%) of 1743
patterns (1092 LP, 534 HCC, 117 MAC) generated on tissues from 50
patients. Representative histology (hematoxylin and eosin (H&E)
staining, original magnification ×200) for D LP, E HCC, and F MAC.
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Lipid patterns reflect tumor heterogeneity

We further compared the variation of the HCC patterns to the
MAC patterns as a surrogate of tumor heterogeneity. The
visual assessment of the PCA score plot of HCC and MAC
showed that the distribution of the HCC lipid patterns is more
widespread than the MAC lipid patterns (Fig. 2A) suggesting
that lipid patterns within HCC are more heterogeneous
compared to MAC. We selected eight representative tumors
to visualize patient-specific tumor lipid patterns (Fig. 2B). The
inter-patient variation in lipid patterns was much smaller for
MAC compared to HCC (Fig. 2B) suggesting that HCC lipid
patterns vary substantially between different patients, whereas
the lipid patterns of colorectal cancer metastasis from different
patients are very similar. PCA score plots with the lipid pat-
terns for MAC and HCC for all the patients can be found in
Supplementary Fig. S4.

Furthermore, we compared the histopathological pheno-
type of the four HCC (Fig. 2C) and the four MAC (Fig. 2D)
selected for Fig. 2B. While HCC histology ranged from
well differentiated to poorly differentiated including mac-
rotrabecular, glandular-like, and steatohepatitic variants
(Fig. 2C), all MAC showed a growth pattern typical for
well-differentiated adenocarcinoma (Fig. 2D), suggesting a
link between the diversity of lipid patterns and histological
phenotypes.

With respect to the heterogeneous lipid patterns observed
in the HCCs, we investigated whether the lipid patterns
could predict the HCC histological phenotype (steatohepa-
titic vs. non-steatohepatitic) or potential presence of mor-
phological intra-tumor heterogeneity. Classification of
steatohepatic HCC vs. non-steatohepatic HCC was achieved
with 91.7% accuracy (Supplementary Table S9). At least in
one of the HCCs, the heterogeneity of the intra-tumor

Fig. 2 Tumor type-specific patterns and patient tumor-specific
patterns. A Tumor type-specific principal component analysis (PCA)
score plot (PC1 23.7%, PC2 15.0 %, mass range m/z 600–900) of 651
lipid patterns (534 hepatocellular carcinoma (HCC), 117 metastatic
adenocarcinoma (MAC)) generated on tissues from 35 patients.
B Patient-specific PCA score plot (PC1 35.4%, PC2 22.3 %, mass
range m/z 600–900) of 303 lipid patterns (250 HCC and 53 MAC, four

patients per tumor type, eight patients in total). Each color represents
the lipid patterns generated from the tissues of one patient. C Repre-
sentative histopathology for each patient HCC tumor shown in (B)
(H&E staining, original magnification ×200). D Histopathology for
each patient MAC tumor shown in (B) (H&E staining, original
magnification ×200).
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morphology appeared to be predictable by lipid patterns as
shown in the PCA score plot (Supplementary Fig. S5).

In summary, based on REIMS lipid patterns HCC
heterogeneity appears to be more substantial than MAC
heterogeneity, with a potential link to histopathological
phenotypes. Moreover, REIMS lipid patterns appear to be
able to precisely characterize tumors including subtyping.

Discrimination of viable and necrotic tumor parts of
metastatic adenocarcinomas

Primary HCCs but also metastases in the liver can be
composed of a mixture of viable and necrotic tumor.
Indeed, in colorectal cancer, necrotic debris in the tumor
lumen, so-called “dirty necrosis” is characteristic for this
tumor type. In other tumors, necrotic tumor is often inter-
preted as a sign of hypoxia. To test our second hypothesis,
we compared 196 lipid patterns obtained from the viable
tumor parts to the necrotic parts in MAC of 28 patients
(sampling detailed in Supplementary Table S2). The lipid
patterns generated via REIMS technology were very dif-
ferent in viable and necrotic MAC and could be dis-
tinguished with 92.9% accuracy (Table 2). Pseudo-LDA
score plot, additional PCA and pseudo-LDA score plots,
confusion matrices, and test of tissue classifier performed on
MAC resected specimens are available in Supplementary
data (Supplementary Fig. S6 and Supplementary Tables S10
and 11).

Next, we further investigated the variance of the lipid
patterns between viable and necrotic tumor parts. The PCA
score plot displayed a separation of MAC and MAC
necrosis along the PC1 (explaining 65.0% of the variance)
axis (Fig. 3A). We used the PC1 loading plot to screen the
mass features discriminative of MAC necrosis (Fig. 3B).
Among these mass features, fatty acids and sphingolipids
including ceramides, acylceramides, sphingomyelins, and
lactosylceramides were identified (Supplementary Fig. S7
and Supplementary Tables S13 and 14). t-tests confirmed a

significant increase in MAC necrosis (Supplementary
Fig. S8 and Supplementary Table S15). We noticed that
these mass features displayed variable intensity ratios in the
necrosis patterns between REIMS spectra, including
between patients (Fig. 3C, D).

In summary, REIMS lipid patterns are able to distin-
guish between MAC viable tumor and MAC necrotic
tumor. Ceramides and related sphingolipids were among
the assigned mass features characteristics for MAC
necrotic tumor.

Classification of viable and necrotic tumor from
different human tumors

As ceramides and related sphingolipids discriminated
necrotic MAC from viable MAC in diverse intensity
ratios, we were interested whether the identified mass
features in colorectal metastases are tumor type specific or
can also be found in the necrotic part of other tumor types.
Therefore, we compared the lipid patterns between viable
and necrotic tumor in one HCC, one HCC with neu-
roendocrine differentiation (HCC NED), one extrahepatic
liposarcoma (LPS), and one extrahepatic adrenocortical
carcinoma (ACC). Results are shown in Fig. 4. On the
PCA score plots, each tumor displayed a separation of
viable and necrotic tumor along their PC1 axis. All PC1
loading plots indicated mass features discriminative of
necrotic tumor similar to what was observed in necrotic
MAC (Fig. 3D). However, the intensity ratios of these
mass features differed between tumors (PCA mass fea-
tures loading plots in Fig. 4).

Noteworthy, we also observed a lipid pattern different
from the ceramide pattern to discriminate necrotic from
viable tumor in two other HCC and HCC metastasis in the
stomach. Details can be found in Supplementary Fig. S9.

In summary, the REIMS lipid pattern distinguishing
necrotic MAC from viable MAC appears to be common in
multiple human tumors.

Table 2 Confusion matrix for the classification of viable metastatic adenocarcinoma (MAC) and necrotic MAC (MAC necrosis) predicted by lipid
patterns. The tissue classification provided by the histopathologist was used as actual class. Classification of 196 patterns (117 viable, 79 necrotic)
generated from tissues of 29 patients using 20 principal components dimensions, a mass range m/z 200–1100 and resulting in no outlier. The mean
class prediction by lipid pattern was 92.9%, ranging from 86.1 to 97.5% and was best for MAC viable tumor.

MAC MAC necrosis
Actual MAC 97.50% 2.60%
Class MAC necrosis 13.90% 86.10%

Overall class rate

92.9 % 

Predicted Class
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Fig. 3 Discrimination between necrotic and viable metastatic
adenocarcinomas. A Principal component analysis (PCA) score plot
(PC1 65.0%, PC2 10.3%) for the classification of 196 metastatic
adenocarcinoma (MAC) lipid patterns (117 MAC (104 colorectal, 11
breast) and 79 MAC necrosis (all colorectal)) generated from tissues of
28 patients using 20 PC dimensions and a mass range m/z 200–1100.
B PC1 loading plot indicating which mass features contributed to
the PC1 dimension. C Single rapid evaporative ionization mass
spectrometry (REIMS) spectrum for MAC necrosis from one patient.

D Single REIMS spectrum for MAC necrosis from another patient. C,
D Highlighted in violet mass spectral peaks discriminative of MAC
necrosis from MAC based on the PC1 loading plot. Assigned repre-
sentative molecular structure for mass spectral peaks m/z 572.48,
820.78, 687.54, and 896.59 as ceramide 34:1;2, acylceramide 52:0;3,
sphingomyelin 34:1;2, and lactosylceramide 34:1;2, respectively.
Representative ceramide backbone as d18:1/16/0 in black, diverse
moieties in colors.
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Comparisons of necrotic tumors targeted on
ceramide metabolic shifts

As we observed that the same mass features identified as
ceramides and related sphingolipids discriminated necrotic
from viable tumor in multiple different human tumors, we
compared their intensity ratios in necrotic patterns between
tumors. We explored the potential of ceramide metabolism
from necrotic areas for patient subclassification, indepen-
dently from the tumor type.

We used PCA score plots of necrotic tumor lipid patterns
targeting four specific mass features to evaluate the impact
of metabolic shifts involving two ceramides with two
acylceramides (Fig. 5A, B), two lactosylceramides (Fig. 5C,
D), or two sphingomyelins (Fig. 5E, F). Metabolic links
between the mass features used for the PCA were integrated
into each PC1/PC2 loading plots (Fig. 5B, D, F) and can be
seen in an overview of the sphingolipid pathway in Fig. 6.

We noticed that the orientation of the arrows linking each
ceramide and their respective metabolic partner differed.
Parallel arrows were displayed only between each ceramide
and respective sphingomyelin (Fig. 5F), but this was not the
case for acylceramides (Fig. 5B) nor for lactosylceramides
(Fig. 5D). Only ceramides and sphingomyelins were linked
by a single and direct biochemical reaction.

The necrotic MAC lipid patterns of one of the patients
appeared to be more similar to the necrotic tumor lipid
patterns of the ACC and the LPS based on the balance
ceramides/acylceramides (Fig. 5A). Similar observation was
made on the metabolic shift ceramides/lactosylceramides

for another MAC patient closer to the HCC NED (Fig. 5D).
For the ratio ceramides/sphingomyelins, MAC and LPS
necrotic patterns were more heterogeneously distributed
compared to the necrotic HCC NED patterns (Fig. 5G).

In summary, REIMS lipid patterns offer new perspec-
tives to classify patients based on metabolic shifts present in
necrotic tumors.

Discussion

In current clinical practice, intraoperative decisions often
depend on ex vivo examination of resected tissue by a
pathologist using frozen tissue sections. Technical issues
such as size of the tissue piece that can be investigated
during frozen section pathology, type of material (some
tissue types cannot be cut frozen), and time constraints
during surgery can make frozen sections challenging to
interpret with certainty. Besides, the diagnostic delay
between excision time and reported diagnosis may hamper
the judgment regarding the extension of the resection.
Completeness of tumor resection during surgery is usually
evaluated by histopathological examination of the fixed
resected specimen after surgery, which takes several
days. In addition, instant diagnosis of malignancy can be
challenging if relevant morphological features are not
readily recognizable. Diagnostic subjectivity can lead to
disagreement between experts [31]. For definitive diagnosis,
histopathology may need to be complemented by immu-
nohistochemistry or other molecular investigations to

Fig. 4 Discrimination between necrotic and viable tumor.
A–D Principal component analysis (PCA) score plots on the left and
respective PC1 mass features loading plots on the right (mass range m/
z 500–1100) for: A 19 lipid patterns (13 viable, 6 necrotic) generated
from a hepatocellular carcinoma. B Forty-one lipid patterns (18 viable,

23 necrotic) generated from a hepatocellular carcinoma with neu-
roendocrine differentiation. C Twenty-three lipid patterns (9 viable, 14
necrotic) generated from an extrahepatic liposarcoma. D Nine patterns
(eight viable, one necrotic) generated from an extrahepatic adreno-
cortical carcinoma.
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enable the identification of the origin of the tumor extending
the specimen reporting time [32].

Near real-time feedback to guide surgical decisions
could potentially improve patient care and let to the
investigation of fresh tissue classifiers based on lipid pat-
terns. The potential of lipid patterns for the classification
of liver tumor tissues has already been suggested using
mass spectrometry imaging (MSI) [33] on frozen sections
[34, 35], but also REIMS of electrosurgical vapors [17],
which allows analysis on fresh resected tissues and a near
real-time feedback.

Our classification of normal LP, HCC, and liver metas-
tasis of colorectal and breast cancer (MAC) based on
ex vivo real-time lipid patterns reached 98.1% accuracy
when compared to gold standard pathology suggesting that
REIMS technology may be able to assist liver tumor iden-
tification during surgery.

Similarly, our investigation demonstrates that lipid pat-
terns provide immediate insights of the tumor metabolic
phenotype, which may improve clinical decision. Our
experiment was performed ex vivo with a surgical hand-
piece but dedicated tools using less destructive sampling

Fig. 5 Comparisons of necrotic tumors based on ceramide meta-
bolic shifts. A, C, E Principal component analysis (PCA) score plots,
B, D, F their respective PC1/PC2 mass features loading plots for lipid
patterns of necrotic tumor of: metastatic adenocarcinoma (MAC),
liposarcoma (LPS), adrenocortical carcinoma (ACC), hepatocellular
carcinoma with neuroendocrine differentiation (HCC NED). A PCA
score plot of 94 necrotic patterns (79 MAC, 14 LPS, 1 ACC) targeting
four mass features assigned as ceramides (572.45, 682.55) and acyl-
ceramides (820.75, 930.85), generated from tissues of 16 patients (14
MAC, 1 LPS, 1 ACC; five PC dimensions, PC1 88.4%, PC2 11.4%).

C PCA score plot of 102 necrotic patterns (79 MAC, 23 HCC NED)
targeting four mass features assigned as ceramides (572.45, 682.55)
and lactosylceramides (896.55, 1006.65) generated from tissues of 15
patients (14 MAC, 1 HCC NED; five PC dimensions, PC1 86.1%, PC2
13.7%). E PCA score plot of 117 necrotic patterns (79 MAC, 1 ACC,
14 LPS, 23 HCC NED) targeting four mass features assigned as cer-
amides (572.45, 682.55) and sphingomyelins (687.55, 797.65) gen-
erated from tissues of 17 patients (14 MAC, 1 HCC NED, 1 LPS, 1
ACC; five PC dimensions, PC1 95.4%, PC2 3.7%).
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with REIMS or other ionization sources also generating
lipid patterns could provide similar conclusions [15, 16, 36].
Likewise, rapid MSI analyses of frozen sections could
provide an assessment of the tissue malignancy in a com-
patible timeframe with intraoperative diagnostics, with the
benefit of precise histological correlation [37, 38]. These
mass spectrometry technologies based on real-time lipid
patterns recognition for cancer precision medicine could be
implemented in the operating room or in the pathology
laboratory, depending on the impact of the results for
clinical decisions. Characterization of tumor heterogeneity
could influence clinical interventions (e.g., chemotherapy
selection) but could also be conceived as impactful for
surgical decisions such as optimized margin resection based
on the tumor biology. These perspectives of cancer preci-
sion required collaborative efforts for validation of our
findings in prospective study on more tissue pieces and
investigations about feasibility and implementation. Lipid
patterns could translate findings from other research fields
such as genomics or proteomics, or correlate directly with
detailed clinical data.

Beyond this, the presence of tumor heterogeneity ques-
tions the reproducibility of real-time tissue classifiers based
on lipid patterns, especially when it comes to compare

metabolic phenotypes on a worldwide scale. Beyond hard-
ware and protocol harmonization, cross-validation of tissue
classification based on REIMS lipid patterns libraries
acquired at multiple sites appears to be one of the next key
steps to validate such technology and facilitate its accep-
tance in clinical practice. Coordinated efforts are key
between research and clinical teams to implement the
technology within the routine pathology workflow so that
input from real-time tissue classifiers can actively support
histopathology diagnostics.

Here, we illustrated how lipid patterns can characterize
tumor hallmarks on two hypotheses regarding metastasis
and necrosis.

For the first hypothesis, we interpreted the overview of
the variance of the lipid patterns with regards to tumor
heterogeneity and histopathology. While HCC patterns
were substantially different between patients (inter-tumor
heterogeneity), MAC patterns were more similar between
patients (Fig. 2B). The homogenous patterns obtained from
MAC compared to the heterogeneous HCC patterns
(Fig. 2A) go along with the biological variance expected
when comparing primary and secondary tumors. Secondary
tumors, as MAC, share common ground biological char-
acteristics to leave their initial generating site, migrate,

Fig. 6 Scheme of sphingolipid metabolism. Integration of the cer-
amides and related sphingolipids discriminative of tumor necrosis
detected by REIMS with apparent molecular structures (represented

with ceramide backbone d18:1/16/0). Scheme adapted from literature
[9, 45–49].
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attach, and grow in a new tissue environment [21]. HCC
generate more diverse clones of tumors in their initial liver
site with multiple features of growth patterns and dediffer-
entiation with loss of hepatic healthy architecture (Fig. 2C),
whereas MAC are generally homogenous and well differ-
entiated in the liver (Fig. 2D).

The generation of patient-specific tumor patterns can be
used to evaluate the respective impact of inter- and intra-
tumor heterogeneity on clinical decisions. Further research
investigations could contribute to a better understanding of
tumor heterogeneity assessment by lipid patterns. The pre-
cise spatial distribution of lipids in tissue sections com-
bining MSI [33] and morphometric analysis [39] leads to
detail the links between lipid patterns and histopathology
changes. We demonstrated that lipid patterns generated by
REIMS can provide a fast and quantifiable modality to
complement histopathology in the assessment of tumor
heterogeneity.

For our second hypothesis, we studied the discrimination
of viable and necrotic parts of MAC and other tumors to
identify specific lipids involved in tumor cell death meta-
bolism. We used these lipids identified as ceramides and
related sphingolipids to classify patient tumors based on
specific metabolic shifts, which can be a challenging
approach for real-time classifiers.

Real-time classifiers have certain analytical limitations in
comparison to the comprehensive characterization of lipid
extracts after chromatographic separation [40] for targeted
analysis. The detection of lipid species that contribute to the
classifier, identification confidence, and their biological
interpretation is compromised by the presence of isobaric or
isomeric complex lipids, in-source fragmentation, or the
lack of resolving power during mass spectrometric analysis.
Even if online databases of mass spectra and previous
publications generated on diverse platforms are used to
confidentially validate lipid identifications, the biological
roles of lipids are only partly understood. The still growing
knowledge of the role of lipids in tumor biology [9] and the
interconnected metabolic pathways each species may
experience also represent limitations of biological inter-
pretation. A multitude of diverse and interconnected meta-
bolic pathways are simultaneously active in viable cellular
tissues. This makes them more challenging to isolate from
each other by mass spectrometry. Before cell death, meta-
bolism might be directed toward essential functional activ-
ities, leading to “simplified” necrosis patterns more suitable
for investigation. The simultaneous detection of lipids that
are metabolically closely related and their statistically sig-
nificant contribution to discriminate tissues confirm that our
findings depict a real-time biological reality.

Moreover, our report of a ceramide pattern dis-
criminative of tumor necrosis by REIMS correlates with
previous investigations where ceramides were identified

in situ by MSI [33] in necrotic areas of human tumors using
diverse analytical platforms. Tata et al. highlighted Cer
(34:1) in tissue sections of a variant of a breast cancer cell
line xenograft in mice [41]. The authors suggested Cer
(34:1) as shared marker for necrosis among various tumors,
supported by previous studies on glioblastomas [38]. In
addition, Cer(34:1) was reported as part of a lipid pattern in
colorectal liver metastasis from 50 patients to distinguish
usual necrosis, typical of tumor progression, from infarcted-
like necrosis, typical of response to Bevacizumab. Simi-
larly, the distributions of both Cer(34:1) and Cer(42:2)
characterized necrotic areas in high grade serous ovarian
cancers [42].

The precise metabolic interconnections of these cer-
amides and related sphingolipids in tumor cell death are
critical to account for and useful to identify targets for
cancer therapies. Ceramides are central metabolites of the
sphingolipids metabolism (Fig. 6) and their balance with
related sphingolipids is critical in the fate of cells for growth
and survival [43]. A multitude of cell stress responses to
stimuli such as tumor necrosis factor or ultraviolet radia-
tions induce accumulation of ceramides, which lead to a
cascade of events that involve the activation of caspases and
permeabilization of mitochondrial membranes with release
of cytochrome C to induce cell death [22, 23]. Ceramides
can be generated by sphingomyelinase, through de novo or
salvage pathways, and their accumulation acts in synergy
with chemotherapeutic agents to increase tumor cell death.
Pathways that consume the pool of ceramides can be con-
sidered pro-survival processes to protect again cell death,
enhance resistance to treatment, and contribute to cancer
progression [10, 44].

Acylceramides were recently considered a storage form
of ceramides in lipid droplets to regulate their accumulation
[45]. Increase of acylceramides in colon adenocarcinoma
cell lines was associated with more cell survival, and
therefore potential resistance to chemotherapy. Structurally,
the backbone of the acylceramides in our investigation was
assigned to a phytoceramide, limitedly reported in literature
[46–48]. An extra hydroxylation and desaturation step in
the production of acylceramides from ceramides appears
plausible: the extra hydroxyl in the sphingosine backbone
was suggested to enable lipid packing in the membrane
through an increased amount of hydrogen bounding at the
membrane interface [49]. Thus, the storage of acylcer-
amides as phytoceramides seems structurally and biologi-
cally rational.

Similarly, the balance between ceramides and lacto-
sylceramides, and glycosphingolipids in general, has been
topic of interest in drug therapy, in particular associated to
the overexpression of efflux pump P-glycoprotein [50].
Glucosylceramide synthase balances between proapoptotic
ceramide and antiapoptotic glucosylceramide are therefore
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the object of studies about drug resistance [24] and drug
injury [51].

The delicate balance ceramides/sphingomyelins is indi-
cative of a direct and single biochemical reaction, critical in
cell death: the hydrolysis of sphingomyelins into ceramides
by sphingomyelinase. In addition to a difference in the
phase of the necrosis process, the heterogeneity of this
metabolic balance between tumors could be associated with
two hypotheses. First, some tumors could require more
accumulation of ceramides to die than other tumors. Sec-
ond, some tumors could generate the ceramides mainly by
the sphingomyelinase, while other tumors could mainly use
de novo or the salvage pathways.

Moreover, the presence of sphingomyelin as a dis-
criminator of necrosis from viable tumor could suggest that
the sphingomyelin breakdown might not be consistently
substantial in the generation of ceramides. With regard to
patterns changes interpretation, the relative content of the
tissue lipid pattern could shift from glycerophospholipids,
the main structural lipid class reported by REIMS [17, 18],
to sphingolipids during the onset of necrosis. The last
catabolic breakdown might lead to the accumulation of
remnant end-product lipids that mainly represent the pat-
terns of dead tumor cells. In the absence of functional
ceramidases, probably after lysosomes lysis, the ceramide
backbone remains intact. Therefore, ceramides and related
sphingolipids accumulate in necrotic tissue due to their
lipophilic nature that hampers their diffusion [49]. In con-
trast, the degradation of glycerophospholipids by enzymes
such as phospholipases, or spontaneous hydrolyzes, could
explain the production of fatty acids that are more prone to
diffusion.

Yet, the ceramide pattern is not to be considered a uni-
versal pattern for the detection of necrosis in human tumors
because we observed a lipid pattern discriminative of
necrosis different from the ceramide pattern (Figs. 3 and 4)
in two HCC cases (Supplementary Fig. S9). Nevertheless, it
appears independent from the tumor origin, whether the
tumor originates from ectodermal (i.e., for MAC, HCC) or
mesodermal (i.e., LPS, ACC) cells/tissues [52].

Additionally, relative intensity changes of the ceramides
in the pattern could provide tumor characteristic molecular
information reachable in real time. In our investigation on
metabolic shifts, acylceramides were dominant in LPS and
ACC necrosis patterns compared to the MAC cohort
(Fig. 5A, B). Pharmacokinetics considerations aside, these
results appear compatible with the moderate effect of
cytotoxic agents to treat these tumors [53, 54]. Likewise, we
noticed that the MAC necrosis patterns of one patient pre-
sented predominant acylceramides compared to the rest of
the MAC cohort. We can hypothesize that the tumor of this
patient might react differently to treatment than the rest of
the cohort. Similarly, a substantial metabolic shift was

noticed between ceramides and lactosylceramides (Fig. 5C,
D) suggesting that the full viable tumor might be different
metabolically, even if not histologically. As these metabolic
shifts do not appear associated with local intra-tumor het-
erogeneity, this kind of findings could have an impact for
clinical decision making.

Our study provides evidence that knowledgeable insights
can be obtained from the analysis of necrotic tissues, while
the morphologic information to be extracted by a patholo-
gist from a necrotic tissue remains subtler than from viable
tissues. The variety of lipid patterns in tumor necrosis could
be associated with a different phase or specificity of the
metabolic process to reliably provide insight about the
metabolism of the viable tumor. In addition, the common
detection of necrosis by the same ceramides enables com-
parisons of tumors from different types based on specific
metabolic shifts. It opens new perspective toward translat-
ing findings from frequent cancers to rare cancers, far less
investigated, to also improve their clinical management.

Lipid patterns generated by REIMS can provide a fast
and quantifiable modality to identify and characterize tumor
tissue and its heterogeneity. Moreover, we described the
ability of real-time analytical technique to reflect cell death,
one of the most significant biological processes involved in
human diseases. The translational aspect of these findings
strengthens the scientific knowledge gathered on lipid
metabolism during tumor cell death. The versatility of
REIMS allows metabolic analysis of cell models [55]
through biological tissues during surgery. In a field gov-
erned by tumor heterogeneity affecting patient outcome,
precise characterization of heterogeneous tumor metabolic
phenotypes is expected to transform clinical decision-
making.

Our current study demonstrates the benefit of real-time
lipid patterns to distinguish between normal and tumor liver
tissues which might support intraoperative decision-making
in the future. Lipid patterns are informative and potentially
clinically useful for prediction of histopathological pheno-
types of viable liver tumors, typing of primary and meta-
static liver tumors, assessment of tumor heterogeneity, and
subtyping of HCCs. Moreover, the report of a ceramide
pattern characteristic of tumor necrosis in MAC, and com-
mon to multiple human tumors, highlights a potential new
approach to use the metabolic phenotype for classification
of completely necrotic tumors. This might be particularly
interesting to histopathologists and clinicians as the mor-
phological information that can be obtained from necrotic
tissues is very limited compared to viable tissues. Cancer
precision medicine may benefit from real-time lipid patterns
in the future.
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