Generation of a new immortalized human lung pericyte cell line: a promising tool for human lung pericyte studies

Abstract

Pericytes apposed to the capillary endothelium are known to stabilize and promote endothelial integrity. Recent studies indicate that lung pericytes play a prominent role in lung physiology, and they are involved in the development of various lung diseases including lung injury in sepsis, pulmonary fibrosis, asthma, and pulmonary hypertension. Accordingly, human lung pericyte studies are important for understanding the mechanistic basis of lung physiology and pathophysiology; however, human lung pericytes can only be cultured for a few passages and no immortalized human lung pericyte cell line has been established so far. Thus, our study aims to establish an immortalized human lung pericyte cell line. Developed using SV40 large T antigen lentivirus, immortalized pericytes exhibit stable SV40T expression, sustained proliferation, and have significantly higher telomerase activity compared to normal human lung pericytes. In addition, these cells retained pericyte characteristics, marked by similar morphology, and expression of pericyte cell surface markers such as PDGFRβ, NG2, CD44, CD146, CD90, and CD73. Furthermore, similar to that of primary pericytes, immortalized pericytes promoted endothelial cell tube formation and responded to different stimuli. Our previous data showed that friend leukemia virus integration 1 (Fli-1), a member of the ETS transcription factor family, is a key regulator that modulates inflammatory responses in mouse lung pericytes. We further demonstrated that Fli-1 regulates inflammatory responses in immortalized human lung pericytes. To summarize, we successfully established an immortalized human lung pericyte cell line, which serves as a promising tool for in vitro pericyte studies to understand human lung pericyte physiology and pathophysiology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cell morphology and characteristics of normal and immortalized human lung pericytes.
Fig. 2: Relative telomerase activity of normal and immortalized human lung pericytes.
Fig. 3: Representative histograms of cell-surface marker staining on immortalized human lung pericytes.
Fig. 4: Response of normal and immortalized human lung pericytes to different stimuli.
Fig. 5: The effect of normal and immortalized human lung pericytes on endothelial cell tube formation under hypoxic conditions.
Fig. 6: Fli-1 regulates inflammatory response in immortalized human lung pericytes.

References

  1. 1.

    Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte? J Cereb Blood Flow Metab. 2016;36:451–5.

    CAS  Article  Google Scholar 

  2. 2.

    Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.

    CAS  Article  Google Scholar 

  3. 3.

    Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    CAS  Article  Google Scholar 

  4. 4.

    Shammout B, Johnson JR. Pericytes in chronic lung disease. Adv Exp Med Biol. 2019;1147:299–317.

    CAS  Article  Google Scholar 

  5. 5.

    Bichsel CA, Hall SR, Schmid RA, Guenat TO, Geiser T. Primary human lung pericytes support and stabilize in vitro perfusable microvessels. Tissue Eng Part A. 2015;21:2166–76.

    CAS  Article  Google Scholar 

  6. 6.

    Evdokiou A, Kanisicak O, Gierek S, Barry A, Ivey JM, Zhang X, et al. Characterization of burn eschar pericytes. J Clin Med. 2020;9:606.

    CAS  Article  Google Scholar 

  7. 7.

    Wilson CL, Stephenson SE, Higuero JP, Bostwick FC, Hung FC, Schnapp ML. Characterization of human PDGFR-beta-positive pericytes from IPF and non-IPF lungs. Am J Physiol Lung Cell Mol Physiol. 2018;315:L991–1002.

    CAS  Article  Google Scholar 

  8. 8.

    Kottke MA, Walters TJ. Where’s the leak in vascular barriers? A review. Shock. 2016;46:20–36.

    Article  Google Scholar 

  9. 9.

    Dominguez E, Raoul W, Calippe B, Sahel AJ, Guillonneau X, Paques M, et al. Experimental branch retinal vein occlusion induces upstream pericyte loss and vascular destabilization. PLoS One. 2015;10:e0132644.

    Article  Google Scholar 

  10. 10.

    Nakazato R, Kawabe K, Yamada D, Ikeno S, Mieda M, Shimba S, et al. Disruption of Bmal1 impairs blood-brain barrier integrity via pericyte dysfunction. J Neurosci. 2017;37:10052–62.

    CAS  Article  Google Scholar 

  11. 11.

    Armulik A, Genove G, Mae M, Nisancioglu HM, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.

    CAS  Article  Google Scholar 

  12. 12.

    Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.

    CAS  Article  Google Scholar 

  13. 13.

    Van DH HJ, Jansen JFA, Van MJP, Buchem VAM, Muller M, Wong MS, et al. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol Aging. 2016;45:190–6.

    Article  Google Scholar 

  14. 14.

    Ziegler T, Horstkotte J, Schwab C, Pfetsch V, Weinmann K, Dietzel S, et al. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest. 2013;123:3436–344.

    CAS  Article  Google Scholar 

  15. 15.

    Zeng H, He X, Tuo QH, Liao FD, Zhang QG, Chen XJ. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2alpha/Notch3 pathways. Sci Rep. 2016;6:20931.

    CAS  Article  Google Scholar 

  16. 16.

    Hung CF, Wilson CL, Schnapp LM. Pericytes in the lung. Adv Exp Med Biol. 2019;1122:41–58.

    CAS  Article  Google Scholar 

  17. 17.

    Sun Y, Sun W, Yang N, Liu J, Tang HI, Li FZ, et al. The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis. Int J Biochem Cell Biol. 2019;117:105639.

    CAS  Article  Google Scholar 

  18. 18.

    Johnson JR, Folestad E, Rowley JE, Noll ME, Walker AS, Lloyd MC, et al. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2015;308:L658–71.

    CAS  Article  Google Scholar 

  19. 19.

    Yuan K, Shamskhou EA, Orcholski ME, Nathan A, Reddy S, Honda H, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension. Circulation. 2019;139:1710–24.

    CAS  Article  Google Scholar 

  20. 20.

    Li P, Zhou Y, Goodwin AJ, Cook AJ, Halushka VP, Zhang KX, et al. Fli-1 governs pericyte dysfunction in a murine model of sepsis. J Infect Dis. 2018;218:1995–2005.

    Article  Google Scholar 

  21. 21.

    Umehara K, Sun Y, Hiura S, Hamada K, Itoh M, Kitamura K, et al. A new conditionally immortalized human fetal brain pericyte cell line: establishment and functional characterization as a promising tool for human brain pericyte studies. Mol Neurobiol. 2018;55:5993–6006.

    CAS  Article  Google Scholar 

  22. 22.

    Berrone E, Beltramo E, Buttiglieri S, Tarallo S, Rosso A, Hammes PH, et al. Establishment and characterization of a human retinal pericyte line: a novel tool for the study of diabetic retinopathy. Int J Mol Med. 2009;23:373–8.

    CAS  PubMed  Google Scholar 

  23. 23.

    Campisi J. Cancer, aging and cellular senescence. In Vivo. 2000;14:183–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Mitani A, Kobayashi T, Hayashi Y, Matsushita N, Matsushita S, Nakao S, et al. Characterization of doxycycline-dependent inducible Simian Virus 40 large T antigen immortalized human conjunctival epithelial cell line. PLoS One. 2019;14:e0222454.

    CAS  Article  Google Scholar 

  25. 25.

    Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob JH, Ergün S. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. 2011;6:e20540.

    CAS  Article  Google Scholar 

  26. 26.

    Hung CF, Mittelsteadt KL, Brauer R, McKinney LB, Hallstrand ST, Parks CW, et al. Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol. 2017;312:L556–67.

    Article  Google Scholar 

  27. 27.

    Edelman DA, Jiang Y, Tyburski JG, Wilson FR, Steffes PC. Lipopolysaccharide up-regulates heat shock protein expression in rat lung pericytes. J Surg Res. 2007;140:171–6.

    CAS  Article  Google Scholar 

  28. 28.

    Li P, Goodwin AJ, Cook JA, Halushka VP, Zhang XK, Fan HK. Fli-1 transcription factor regulates the expression of caspase-1 in lung pericytes. Mol Immunol. 2019;108:1–7.

    Article  Google Scholar 

  29. 29.

    Wu Y, Li P, Goodwin AJ, Cook JA, Halushka VP, Zingarelli B, et al. miR-145a regulates pericyte dysfunction in a murine model of sepsis. J Infect Dis. 2020;222:1037–45.

    CAS  Article  Google Scholar 

  30. 30.

    Edelman DA, Jiang Y, Tyburski JG, Wilson FR, Steffes PC. Cytokine production in lipopolysaccharide-exposed rat lung pericytes. J Trauma. 2007;62:89–93.

    CAS  Article  Google Scholar 

  31. 31.

    Kim CO, Huh AJ, Kim MS, Chin BS, Han SH, Choi SH, et al. LPS-induced vascular endothelial growth factor expression in rat lung pericytes. Shock. 2008;30:92–97.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Carol Feghali-Bostwick for providing us the human lung sample through her collaboration with Dr. Joseph Pilewski at the University of Pittsburgh.

Funding

This work was supported in part by National Institute of Health grants [1R01GM113995 (HF), 1R01GM130653 (HF), 3R01GM130653-03S1 (HF), 1K23HL135263-01A1 (AJG), UL1TR001451 (PVH), and ULTR001450 (PVH)].

Author information

Affiliations

Authors

Contributions

PL and HF performed study concept and design; PL, YW, and HF provided acquisition, analysis and interpretation of data, and statistical analysis; PL, AJG, PVH, CLW, LMS, and HF writing, review, and revision of the paper; CLW and LMS provided material support. All authors read and approved the final paper.

Corresponding author

Correspondence to Hongkuan Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wu, Y., Goodwin, A.J. et al. Generation of a new immortalized human lung pericyte cell line: a promising tool for human lung pericyte studies. Lab Invest (2021). https://doi.org/10.1038/s41374-020-00524-y

Download citation

Search

Quick links