SMAD4 mutation correlates with poor prognosis in non-small cell lung cancer

Abstract

SMAD4 is an intracellular signaling mediator of the TGF-β pathway. Its mutation was commonly observed in gastrointestinal cancers, such as pancreatic cancer. The loss of SMAD4 on immunohistochemical staining is often used to suggest a pancreaticobiliary differentiation in evaluating a metastatic adenocarcinoma with unknown origin. However, the function and molecular mechanism of SMAD4 in non-small cell lung cancer (NSCLC) development are largely unknown. Thus, we studied the correlation between SMAD4 mutations and clinico-molecular features in the patients with NSCLC. We reported the frequencies and prognostic values of SMAD4 mutations in a Chinese NSCLC cohort using next-generation sequencing. The NSCLC cases from several public databases, including The Cancer Genome Atlas and others, were also used in this study to elucidate SMAD4-related molecular partners and mechanisms. Integrated bioinformatics analyses were conducted, such as analysis of Gene Ontology enrichment analysis, gene set enrichment analysis (GSEA), and survival analysis. Immunohistochemistry showed that the tissues harboring SMAD4 mutations tended to show SMAD4 deficiency or loss, while SMAD4 expression was significantly reduced at all stages of NSCLC cases. We found that reduced SMAD4 expression was more frequent in the patients with poor disease-free survival and resistance to platinum-based chemotherapy. SMAD4 mutation was an independent risk factor for the survival of NSCLC patients. The expression of SMAD4 was associated with that of SMAD2. The GSEA showed that SMAD4 might promote NSCLC progression by regulating proliferation, adhesion, and immune response. In conclusion, these data suggest that SMAD4 mutation or loss as well as reduced expression can be used to identify the NSCLC patients with poor survival and resistance to platinum-based chemotherapy. SMAD4 may be a predictive marker or therapeutic target in NSCLC. The source code and user’s guide are freely available at Github: https://github.com/wangyue77-ab/smad4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Flow chart of cases selection.
Fig. 2: Immunohistochemical analysis of Smad4 in NSCLC specimens.
Fig. 3: Analyses of genetic variations in SMAD4 for NSCLC.
Fig. 4: Patterns of SMAD4 expression in NSCLC.
Fig. 5: SMAD4 was significantly downregulated in NSCLC cases from TCGA.
Fig. 6: Kaplan–Meier survival analysis according to SMAD4 mutation or expression.
Fig. 7: GO and GSEA of SMAD4-related enrichment gene sets in NSCLC cases from TCGA.

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Article  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    PubMed  Article  Google Scholar 

  3. 3.

    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    PubMed  Article  Google Scholar 

  4. 4.

    Brigatinib outperforms crizotinib as first-line therapy. Cancer Discov. 2020;10:OF5.

  5. 5.

    Suzuki S, Ishida T, Yoshikawa K, Ueda R. Current status of immunotherapy. Jpn J Clin Oncol. 2016;46:191–203.

    PubMed  Article  Google Scholar 

  6. 6.

    Borghaei H, Paz-ares L, Horn L, Zhou C, Wang J, Mok T, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13:788–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Nikolic A, Kojic S, Knezevic S, Krivokapic Z, Ristanovic M, Radojkovic D. Structural and functional analysis of SMAD4 gene promoter in malignant pancreatic and colorectal tissues: detection of two novel polymorphic nucleotide repeats. Cancer Epidemiol. 2011;35:265–71.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73:725–35.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Morén A, Itoh S, Moustakas A, Dijke P, Heldin CH. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene. 2000;19:4396–404.

    PubMed  Article  Google Scholar 

  12. 12.

    Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Drabsch Y, ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31:553–68.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W, et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest. 2008;118:2722–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wilentz RE, Su GH, Dai JL, Sparks AB, Argani P, Sohn TA, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am J Pathol. 2000;156:37–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Ji H, Isacson C, Seidman JD, Kurman RJ, Ronnett BM. Cytokeratins 7 and 20, Dpc4, and MUC5AC in the distinction of metastatic mucinous carcinomas in the ovary from primary ovarian mucinous tumors: Dpc4 assists in identifying metastatic pancreatic carcinomas. Int J Gynecol Pathol. 2002;21:391–400.

    PubMed  Article  Google Scholar 

  17. 17.

    Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, Zhang X, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15:4674–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Maitra A, Molberg K, Albores-Saavedra J, Lindberg G. Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol. 2000;157:1105–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001;7:4115–21.

    CAS  PubMed  Google Scholar 

  20. 20.

    Davison JM, Hartman DA, Singhi AD, Choudry HA, Ahrendt SA, Zureikat AH, et al. Loss of SMAD4 protein expression is associated with high tumor grade and poor prognosis in disseminated appendiceal mucinous neoplasms. Am J Surg Pathol. 2014;38:583–92.

    PubMed  Article  Google Scholar 

  21. 21.

    Singhi AD, Foxwell TJ, Nason K, Cressman KL, McGrath KM, Sun W, et al. Smad4 loss in esophageal adenocarcinoma is associated with an increased propensity for disease recurrence and poor survival. Am J Surg Pathol. 2015;39:487–95.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Ke Z, Zhang X, Ma L, Wang L. Expression of DPC4/Smad4 in non-small-cell lung carcinoma and its relationship with angiogenesis. Neoplasma. 2008;55:323–9.

    CAS  PubMed  Google Scholar 

  23. 23.

    Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378:1727–40.

    PubMed  Article  Google Scholar 

  24. 24.

    Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46:5419–25.

    CAS  PubMed  Google Scholar 

  25. 25.

    Vavalà T, Monica V, Lo Iacono M, Mele T, Busso S, Righi L, et al. Precision medicine in age-specific non-small-cell-lung-cancer patients: integrating biomolecular results into clinical practice—a new approach to improve personalized translational research. Lung Cancer. 2017;107:84–90.

    PubMed  Article  Google Scholar 

  26. 26.

    Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376:2109–21.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33:843–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Mehrvarz Sarshekeh A, Advani S, Overman MJ, Manyam G, Kee BK, Fogelman DR, et al. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS ONE. 2017;12:e0173345.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Investig. 2017;127:1725–40.

    PubMed  Article  Google Scholar 

  33. 33.

    Hoot KE, Oka M, Han G, Bottinger E, Zhang Q, Wang XJ. HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion. J Clin Invest. 2010;120:3606–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2010;29:1351–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Oyanagi H, Shimada Y, Nagahashi M, Ichikawa H, Tajima Y, Abe K, et al. SMAD4 alteration associates with invasive-front pathological markers and poor prognosis in colorectal cancer. Histopathology. 2019;74:873–82.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Liao X, Hao Y, Zhang X, Ward S, Houldsworth J, Polydorides AD, et al. Clinicopathological characterization of SMAD4-mutated intestinal adenocarcinomas: a case-control study. PLoS ONE. 2019;14:e0212142.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997;57:1731–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yatsuoka T, Sunamura M, Furukawa T, Fukushige S, Yokoyama T, Inoue H, et al. Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am J Gastroenterol. 2000;95:2080–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Chang YC, Chang JG, Liu TC, Lin CY, Yang SF, Ho CM, et al. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients. World J Gastroenterol. 2016;22:2314–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Martin D, Abba MC, Molinolo AA, Vitale-Cross L, Wang Z, Zaida M, et al. The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget. 2014;5:8906–23.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    India Project Team of the International Cancer Genome Consortium. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun. 2013;4:2873.

    Article  CAS  Google Scholar 

  42. 42.

    Boone BA, Sabbaghian S, Zenati M, Marsh JW, Moser AJ, Zureikat AH, et al. Loss of SMAD4 staining in pre-operative cell blocks is associated with distant metastases following pancreaticoduodenectomy with venous resection for pancreatic cancer. J Surg Oncol. 2014;110:171–5.

    PubMed  Article  Google Scholar 

  43. 43.

    Yanagisawa K, Uchida K, Nagatake M, Masuda A, Sugiyama M, Saito T, et al. Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers. Oncogene. 2000;19:2305–11.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wan R, Xu X, Ma L, Chen Y, Tang L, Feng J. Novel alternatively spliced variants of Smad4 expressed in TGF-β-induced EMT regulating proliferation and migration of A549 cells. Onco Targets Ther. 2020;13:2203–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wang Y, Tan X, Tang Y, Zhang C, Xu J, Zhou J, et al. Dysregulated Tgfbr2/ERK-Smad4/SOX2 signaling promotes lung squamous cell carcinoma formation. Cancer Res. 2019;79:4466–79.

    CAS  PubMed  Google Scholar 

  46. 46.

    Weis-Banke SE, Lerdrup M, Kleine-Kohlbrecher D, Mohammad F, Sidoli S, Jensen ON, et al. Mutant FOXL2C134W highjacks SMAD4 and SMAD2/3 to drive adult granulosa cell tumors. Cancer Res. 2020;80:3466–79.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Wasserman I, Lee LH, Ogino S, Marco MR, Wu C, Chen X, et al. SMAD4 loss in colorectal cancer patients correlates with recurrence, loss of immune infiltrate, and chemoresistance. Clin Cancer Res. 2019;25:1948–56.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kawaguchi Y, Kopetz S, Newhook TE, De Bellis M, Chun YS, Tzeng CD, et al. Mutation status of RAS, TP53, and SMAD4 is superior to mutation status of RAS alone for predicting prognosis after resection of colorectal liver metastases. Clin Cancer Res. 2019;25:5843–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, et al. SMAD4 loss is associated with cetuximab resistance and induction of MAPK/JNK activation in head and neck cancer cells. Clin Cancer Res. 2017;23:5162–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Ziemke M, Patil T, Nolan K, Tippimanchai D, Malkoski SP. Reduced Smad4 expression and DNA topoisomerase inhibitor chemosensitivity in non-small cell lung cancer. Lung Cancer. 2017;109:28–35.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Zhang S, Takaku M, Zou L, Gu AD, Chou WC, Zhang G, et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 2017;551:105–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Xu H, Agalioti T, Zhao J, Steglich B, Wahib R, Vesely MCA, et al. The induction and function of the anti-inflammatory fate of TH17 cells. Nat Commun. 2020;11:3334.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Wu B, Zhang G, Guo Z, Wang G, Xu X, Li JL, et al. The SKI proto-oncogene restrains the resident CD103+CD8+ T cell response in viral clearance. Cell Mol Immunol. 2020;10:1038.

    Google Scholar 

Download references

Acknowledgements

This study was supported by National Nature Science Foundation of China [Grant Numbers 81972171 and 81472173].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mu Yang or Yuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xue, Q., Zheng, Q. et al. SMAD4 mutation correlates with poor prognosis in non-small cell lung cancer. Lab Invest (2020). https://doi.org/10.1038/s41374-020-00517-x

Download citation

Search

Quick links