Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ATF-3 expression inhibits melanoma growth by downregulating ERK and AKT pathways

Abstract

Activating transcription factor 3 (ATF-3), a cyclic AMP-dependent transcription factor, has been shown to play a regulatory role in melanoma, although its function during tumor progression remains unclear. Here, we demonstrate that ATF-3 exhibits tumor suppressive function in melanoma. Specifically, ATF-3 nuclear expression was significantly diminished with melanoma progression from nevi to primary to metastatic patient melanomas, correlating low expression with poor prognosis. Significantly low expression of ATF-3 was also found in cultured human metastatic melanoma cell lines. Importantly, overexpression of ATF-3 in metastatic melanoma cell lines significantly inhibited cell growth, migration, and invasion in vitro; as well as abrogated tumor growth in a human melanoma xenograft mouse model in vivo. RNA sequencing analysis revealed downregulation of ERK and AKT pathways and upregulation in apoptotic-related genes in ATF-3 overexpressed melanoma cell lines, which was further validated by Western-blot analysis. In summary, this study demonstrated that diminished ATF-3 expression is associated with melanoma virulence and thus provides a potential target for novel therapies and prognostic biomarker applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ATF3 expression decreased in melanoma.
Fig. 2: ATF3 over-expression inhibited melanoma cell growth, migration and invasion.
Fig. 3: ATF3 over-expression inhibits melanoma tumor formation and growth in vivo.
Fig. 4: ATF3 over-expression inhibits melanoma cell growth, migration and invasion by down regulating ERK and AKT phosphorylation.

Data availability

The RNA-sequencing data have been deposited to the NCBI Gene Expression Omnibus under accession number GSE152460.

References

  1. 1.

    Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166:1069–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Koh HK, Geller AC, Miller DR, Grossbart TA, Lew RA. Prevention and early detection strategies for melanoma and skin cancer. Current status. Arch Dermatol. 1996;132:436–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Bandarchi B, Jabbari CA, Vedadi A, Navab R. Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol. 2013;66:644–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Millet A, Martin AR, Ronco C, Rocchi S, Benhida R. Metastatic melanoma: insights into the evolution of the treatments and future challenges. Med Res Rev. 2017;37:98–148.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 2010;15:1–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Thompson MR, Xu D, Williams BR. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med. 2009;87:1053–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Yang Y, Guo W, Ma J, Xu P, Zhang W, Guo S, et al. Downregulated TRPV1 expression contributes to melanoma growth via the calcineurin-ATF3-p53 pathway. J Investig Dermatol. 2018;138:2205–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465:368–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Yan C, Boyd DD. ATF3 regulates the stability of p53: a link to cancer. Cell Cycle. 2006;5:926–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Li X, Zhou X, Li Y, Zu L, Pan H, Liu B, et al. Activating transcription factor 3 promotes malignance of lung cancer cells in vitro. Thorac Cancer. 2017;8:181–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Johrens K, et al. Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood. 2006;107:2536–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Chang F, Zhang Y, Mi J, Zhou Q, Bai F, Xu X, et al. ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells. Cancer Sci. 2018;109:3428–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Wu X, Tommasi di Vignano A, Zhou Q, Michel-Dziunycz PJ, Bai F, Mi J, et al. The ARE-binding protein Tristetraprolin (TTP) is a novel target and mediator of calcineurin tumor suppressing function in the skin. PLoS Genet. 2018;14:e1007366.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Lee CW, Zhan Q, Lezcano C, Frank MH, Huang J, Larson AR, et al. Nestin depletion induces melanoma matrix metalloproteinases and invasion. Lab Investig. 2014;94:1382–95.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell. 2012;150:1135–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Ji Y, Jia L, Zhang Y, Xing Y, Wu X, Zhao B, et al. Antitumor activity of the plant extract morin in tongue squamous cell carcinoma cells. Oncol Rep. 2018;40:3024–32.

    CAS  PubMed  Google Scholar 

  17. 17.

    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.

    CAS  Article  Google Scholar 

  18. 18.

    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Lehraiki A, Cerezo M, Rouaud F, Abbe P, Allegra M, Kluza J, et al. Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discov. 2015;1:15030.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Gao H, Liu R, Sun X. STAT3-induced upregulation of lncRNA SNHG17 predicts a poor prognosis of melanoma and promotes cell proliferation and metastasis through regulating PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 2019;23:8000–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene. 2001;273:1–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Chen BP, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 1994;269:15819–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem. 1996;271:1695–701.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, et al. ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene. 2002;21:7488–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Yan J, Zhong N, Liu G, Chen K, Liu X, Su L, et al. Usp9x- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells. Cell Death Dis. 2014;5:e1316.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U. ATF3 and stress responses. Gene Expr. 1999;7:321–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cui H, Li X, Han C, Wang QE, Wang H, Ding HF, et al. The stress-responsive gene ATF3 mediates dichotomous UV responses by regulating the Tip60 and p53 proteins. J Biol Chem. 2016;291:10847–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BR. Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol. 2007;179:3622–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Nguyen CT, Kim EH, Luong TT, Pyo S, Rhee DK. TLR4 mediates pneumolysin-induced ATF3 expression through the JNK/p38 pathway in Streptococcus pneumoniae-infected RAW 264.7 cells. Mol Cells. 2015;38:58–64.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wang Z, He Y, Deng W, Lang L, Yang H, Jin B, et al. Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice. Oncogene. 2018;37:18–27.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  31. 31.

    Inoue M, Uchida Y, Edagawa M, Hirata M, Mitamura J, Miyamoto D, et al. The stress response gene ATF3 is a direct target of the Wnt/beta-catenin pathway and inhibits the invasion and migration of HCT116 human colorectal cancer cells. PLoS ONE. 2018;13:e0194160.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, et al. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. J Exp Clin Cancer Res. 2018;37:263.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Park GH, Song HM, Jeong JB. Kahweol from coffee induces apoptosis by upregulating activating transcription factor 3 in human colorectal cancer cells. Biomol Ther. 2017;25:337–43.

    CAS  Article  Google Scholar 

  34. 34.

    Wang Z, Yan C. Emerging roles of ATF3 in the suppression of prostate cancer. Mol Cell Oncol. 2016;3:e1010948.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, et al. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett. 2016;12:1642–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Kang Y, Chen CR, Massague J. A self-enabling TGFbeta response coupled to stress signaling: smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 2003;11:915–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Zigler M, Villares GJ, Dobroff AS, Wang H, Huang L, Braeuer RR, et al. Expression of Id-1 is regulated by MCAM/MUC18: a missing link in melanoma progression. Cancer Res. 2011;71:3494–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, et al. ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res. 2013;73:3625–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Grzywa TM, Paskal W, Wlodarski PK. Intratumor and intertumor heterogeneity in melanoma. Transl Oncol. 2017;10:956–75.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Yan Y, Leontovich AA, Gerdes MJ, Desai K, Dong J, Sood A, et al. Understanding heterogeneous tumor microenvironment in metastatic melanoma. PLoS ONE. 2019;14:e0216485.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Zu T, Wen J, Xu L, Li H, Mi J, Li H, et al. Up-regulation of activating transcription factor 3 in human fibroblasts inhibits melanoma cell growth and migration through a paracrine pathway. Front Oncol. 2020;10:624.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 2003;63:2373–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lohr K, Moritz C, Contente A, Dobbelstein M. p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem. 2003;278:32507–16.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. 44.

    Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001;93:53–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci. 2003;23:5187–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Jadhav K, Zhang Y. Activating transcription factor 3 in immune response and metabolic regulation. Liver Res. 2017;1:96–102.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Liu H, Kuang X, Zhang Y, Ye Y, Li J, Liang L, et al. ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 axis. Cancer Cell. 2020;37:324–39. e328

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported to XW by the National Key Research and Development Program of China (2017YFA0104604), the General Program of National Natural Science Foundation of China (81772093), the Key Program of Shandong Province Natural Science Foundation (ZR2019ZD36) and the Key Research and Development Program of Shandong Province (2019GSF108107). CAAL is currently funded by T32 EB016652-06.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xunwei Wu or Christine G. Lian or George F. Murphy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zu, T., Wang, D., Xu, S. et al. ATF-3 expression inhibits melanoma growth by downregulating ERK and AKT pathways. Lab Invest (2020). https://doi.org/10.1038/s41374-020-00516-y

Download citation

Search

Quick links