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Abstract
Tumor-infiltrating lymphocytes play an important, but incompletely understood role in chemotherapy response and
prognosis. In breast cancer, there appear to be distinct immune responses by subtype, but most studies have used limited
numbers of protein markers or bulk sequencing of RNA to characterize immune response, in which spatial organization
cannot be assessed. To identify immune phenotypes of Basal-like vs. Luminal breast cancer we used the GeoMx®
(NanoString) platform to perform digital spatial profiling of immune-related proteins in tumor whole sections and tissue
microarrays (TMA). Visualization of CD45, CD68, or pan-Cytokeratin by immunofluorescence was used to select regions of
interest in formalin-fixed paraffin embedded tissue sections. Forty-four antibodies representing stromal markers and multiple
immune cell types were applied to quantify the tumor microenvironment. In whole tumor slides, immune hot spots (CD45+)
had increased expression of many immune markers, suggesting a diverse and robust immune response. In epithelium-
enriched areas, immune signals were also detectable and varied by subtype, with regulatory T-cell (Treg) markers (CD4,
CD25, and FOXP3) being higher in Basal-like vs. Luminal breast cancer. Extending these findings to TMAs with more
patients (n= 75), we confirmed subtype-specific immune profiles, including enrichment of Treg markers in Basal-likes. This
work demonstrated that immune responses can be detected in epithelium-rich tissue, and that TMAs are a viable approach
for obtaining important immunoprofiling data. In addition, we found that immune marker expression is associated with
breast cancer subtype, suggesting possible prognostic, or targetable differences.

Introduction

Tumor-infiltrating lymphocytes (TILs), play an important,
but incompletely understood role in chemotherapy response
and prognosis in breast cancer [1, 2]. For more aggressive
types of breast cancer, such as HER2+ and triple-negative
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(TNBC) histopathologic subtypes, a higher TILs score in
the primary tumor is associated with improved prognosis
and response to therapy, whereas there is little or no asso-
ciation between TILs and outcomes for ER+ disease [3–6].
ER+ and Luminal disease seem to be less immunogenic,
although there is some heterogeneity in immune gene
expression [7–9].

Data from prior studies indicate that spatial heterogeneity
in TILs is associated with breast cancer subtypes and out-
comes [10–14]. Specifically, the location of immune cells in
intratumoral stroma and/or their proximity to tumor cells
[15] appear to correlate with prognosis in ER- tumors [13],
TNBC [16], and ER+ tumors [14]. These profiling methods
using histologic images showed the importance of studying
the spatial heterogeneity of TILs but were limited by the
small number of immunohistochemical markers used to
estimate TIL abundance.

Larger scale immunoprofiling may elucidate the rela-
tionship between specific immune subpopulations and breast
tumor subtype. Recent studies have leveraged bulk RNA
sequencing to identify clinically-relevant immune pheno-
types and evaluate how immune cells mediate chemotherapy
response and immune checkpoint blockade [17–23]. In a
gene expression analysis of ~11,000 breast tumors, Ali et al.
investigated 22 subsets of immune cells and found that T
regulatory cells (Tregs) and M0 and M2 macrophages were
most strongly associated with poor outcome, regardless of
ER status [23]. Although these studies in bulk tissue have
uncovered prognostic immune cells and signatures, they lack
resolution on intratumoral heterogeneity and the spatial
context of immune cells across the tumor.

Recent studies biomarkers of response to immunotherapy
in melanoma incorporated high-plex immune expression
data with spatial information, using the GeoMx® (Nano-
String) digital spatial profiling (DSP technology [24–26].
They demonstrated that PD-L1 expression in CD68-positive
cells was a predictive marker for progression-free survival,
overall survival, and response to therapy [24]. Conversely,
PD-L1 measured in tumor cells was not prognostic. A
recent paper using the same high-plex platform found that
elevated expression of HLA-DR in TNBC was associated
with long-term disease-free survival. Specifically, HLA-DR
protein expression in the epithelial compartment was a
better discriminator of outcome than stromal expression of
HLA-DR [27]. These findings underscore that both high-
plex immune marker expression and tissue context may be
important variables in immune-based prognostication.

We sought to evaluate differences in immune biomarker
expression, while also considering tissue context, in a
population-based study of breast cancer. Specifically, we
sought to compare immune marker expression in
epithelium-rich and CD45+ (immune cell) infiltrated “hot
spots” within the tumor according to breast cancer subtype.

We also compared methods for capturing immune response
based on whole slides and tissue microarrays (TMA). The
resulting data provide technical insights into approaches for
immune profiling and point to important immune differ-
ences among breast cancer subtypes.

Materials and methods

Study population and samples

The Carolina Breast Cancer Study (CBCS) is a
population-based study of African American and Non-
African American (98% Caucasian, referred to as White)
women from 44 counties of central and eastern North
Carolina conducted in three phases (phase I: 1993–1996;
phase II: 1996–2001; and phase III: 2008–2013); study
details and sampling schema have been described pre-
viously [28–32]. Briefly, cases were women ages 20–74
years, diagnosed with a first primary invasive breast
cancer, and identified via rapid case ascertainment. Black
and younger women (age <50) were oversampled. Race
was determined by self-report and categorized as white or
black. Tumor characteristics for cases (e.g., tumor size,
grade, hormone receptor (HR+) status, node status, and
stage) were abstracted from medical records and pathol-
ogy reports. For this paper, we utilized patient samples
from phase III (CBCS3), which recruited women between
2008 and 2013. Patients who provided informed consent
completed a baseline questionnaire regarding personal
characteristics, including socioeconomics, insurance sta-
tus, health behaviors, and health history, in addition to the
collection of patient tumor tissue, blood, and medical
records. IHC for subtype classification was performed in a
central laboratory, and designations have been previously
described and were defined as follows: Luminal A is ER ≥
10% or PR ≥ 10% and Ki67 < 7%, Luminal B is ER ≥ 10%
or PR ≥ 10% and Ki67 ≥ 7%, HER2+ is ER < 10% and
HER2= 3, and Basal-like is ER < 10%, PR < 10%, and
any EGFR or Ki67 positive signal. For Luminal subtypes,
if Ki67 was missing, grade was substituted; grade ≤ 2 for
Luminal A and grade= 3 for Luminal B [33, 34]. The
Ki67 cut-off for the samples we used in the CBCS was
developed and reporting in Allott et al. [34]. They iden-
tified optimal Ki67 thresholds by generating receiver
operative characteristics (ROC) curve among all Luminal
tumors regardless of IHC-based HER2 status and apply-
ing the Youden method [35] to maximize the sum of the
sensitivity and specificity for PAM50-defined Luminal
tumors. They identified an optimal Ki67 threshold of
7.1% [34]. The study was approved by the Office of
Human Research Ethics/Institutional Review Board at the
University of North Carolina at Chapel Hill, conducted in
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accordance with U.S. Common Rule. Written informed
consent and HIPAA authorization were obtained from
each participant.

Three Basal-like and three Luminal A samples were
chosen to perform whole slide DSP. Samples had pre-
viously been cored for TMA based on H&E analysis of
slides. H&E-stained TMAs were analyzed with the Aperio
(Leica Biosystems, Wetzlar, GR) GENIE algorithm to
determine immune cell infiltration. Selected samples had
1% or more immune infiltrate. One un-stained, TMA-cored,
whole slide per sample was used for the DSP assay. Four
TMA slides from CBCS3 were chosen for analysis,
encompassing cores from the six tumors that were analyzed
on whole slides (described above). These TMAs also
included cores from 69 other tumors. Each TMA had 2–4
(with the vast majority having four) cores per patient sample
and included 11–27 patient samples.

Digital spatial profiling (DSP)

DSP was performed using the NanoString (Seattle, WA)
GeoMx® platform [36]. Immunofluorescence (IF) for pan-
Cytokeratin (tumor), CD45 (leukocyte), CD68 (macro-
phage), and a DNA stain (SYTO 83) were used to visualize
tissue compartments and regions of interest (ROIs). DSP
analysis included 61 oligonucleotide-conjugated antibodies,
including antibodies for negative control IgGs and house-
keeping proteins. All IF antibodies and oligo-tagged anti-
bodies were from Abcam (Cambridge, UK). After
hybridization of the capture probes to FFPE slide-mounted
tissues, the oligo tags were released from the ROIs via
targeted ultraviolet radiation exposure, and then were
counted in a Nanostring nCounter assay [36].

For whole slides, the Basal-like and Luminal A slides
each had 12 ROIs selected from areas that were either
epithelium-rich or immune hot spots based on pan-
Cytokeratin and CD45 IF signal, respectively. No regions
of uniform CD68 staining were identified, but
CD68 staining was often diffusely evident in CD45-positive
regions. ROI selection was performed with guidance from a
board-certified pathologist. Each slide had four small ROIs
(300 µm), four medium ROIs (500 µm), and four large ROIs
(650 µm). For TMAs, we used four TMAs, representing a
total of 75 patients each with 2–4 1 mm cores. The dis-
tribution of subtypes on these TMAs included 5 HER2-
positive, 31 Luminal A, 21 Luminal B, 14 Basal-like, and 4
with missing IHC subtype calls [33]. The sample was
roughly equally divided by race, with 37 Black patients and
38 non-Black patients. We again stained with immuno-
fluorescent markers for CD45, CD68 and pan-Cytokeratin
and selected ROIs with >70% tumor cellularity, resulting in
a total of 346 ROIs selected, with 1–3 ROIs per core. ROI
sizes ranged from 100 to 650 µm in diameter. ROIs were

selected to contain 70% epithelial (pan-Cytokeratin posi-
tive) cell content in a 650 µm circular ROI. If that was not
possible, a smaller circular ROI (300–100 µm) with 70%
tumor cell content was selected.

Data normalization and visualization

RCC files of multiplex data for ROIs were loaded into the
DSP app developed by NanoString. Within the app, sample
ROIs were visualized and normalized using several normal-
ization options, including positive control normalization
(ERCC internal spike-in controls), negative control normal-
ization (mouse and rabbit IgGs), housekeeping control nor-
malization (Ribosomal S6 protein and Histone H3), and ROI/
ultraviolet-light mask area normalization. Raw and normal-
ized data were analyzed by unsupervised hierarchical clus-
tering and visualized in a heatmap within the app or exported
for further visualization (described below). For the final nor-
malization, digital counts from barcodes corresponding to
protein probes were normalized to internal spike-in controls
(ERCC) to account for technical variation. Counts were then
normalized to ultraviolet-light mask area. The same normal-
ization method was used for TMA analysis.

All raw and normalized data were visualized using
relative log expression plots, or boxplots of log2-
transformed protein expression (for all markers, including
tumor proteins, immune proteins, and housekeeping pro-
teins). Data were also analyzed by principal component
analysis. Visualization of raw and normalized data was
performed for all ROIs for both whole slides and TMAs.
Visual assessment of normalized data for whole slides and
TMAs was similar for all normalization methods, but ERCC
and area normalization reduced the technical variation
associated with varying ROI size. All data visualization was
performed in R version 3.6.1 [37]. After normalization,
protein expression values were log2-transformed and
median-centered using Cluster 3.0 [38]. Centroid linkage
hierarchical clustering of the log2-transformed, median-
centered protein expression with was also done in Cluster
3.0 and visualized using Java Tree View [39]. Heatmap
annotations were added in Adobe Illustrator.

Statistical analyses

Supervised protein expression analyses visualized in vol-
cano plots were performed in R. The subtype comparisons
are as follows, Basal versus Luminal A, Basal versus
Luminal B, Luminal A versus Luminal B. First, Wilcoxon
p values were calculated for the difference in protein
expression for each protein between subtypes. The p values
had FDR-BH adjustment, with a q < 0.05 marked as sig-
nificant. The p values were then −log10-transformed. Then,
the fold change in protein expression values were calculated
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by taking the average expression of each protein per sub-
type and subtracting one subtype from the other. A dot plot
was made using the −log10 q values and fold change values
For the volcano plots, each data point is represented by a
black dot with annotation for markers with q < 0.05 and fold
change > 2. Dashed lines indicate the cut-off q < 0.05 and
fold change < 2.

The GeoMx® ImmunoOncology Assay does not provide
single-cell co-localization of markers, but many of the
immune cell types that were evaluated had more than one
marker in the assay. This facilitated the development of cell
type scores (using the average or median of normalized
expression values of the markers of interest), similar to the
approach often used in bulk sequencing or expression
analysis [40–43]. Treg scores were calculated by taking the
median of the log2-transformed values for CD4, CD25, and
FOXP3 for each ROI [42]. For whole slides, the dataset was
separated into immune hot spots and epithelium-enriched
ROIs, and the Treg score was calculated for each ROI. For
analysis of TMAs, the average of the log2-transformed
values for each protein was first calculated from all ROIs
available on a given sample. Treg scores were then calcu-
lated for each sample. In an exploratory analysis, we used a
ROC curve to illustrate the potential ability of the Treg score
to distinguish Basal-like from Luminal A tumors. ROC
curve analysis was performed in R using the Epi package
[44], and sensitivity was calculated. Treg score boxplots
were visualized in R using ggplot2 [45], and Wilcoxon
p values were calculated for subtype comparisons. For
whole slides, immune score and p value were stratified by
dataset (immune hot spot or epithelium-enriched region).

Quality control assessment

Although immune marker expression patterns were similar
in whole slides and TMAs, we formally assessed within
sample agreement in whole slides versus TMAs. We com-
pared four of the six samples used for both whole slides and
TMAs, as two samples only had one epithelium-enriched
ROI in the whole slides. Images of nine epithelium-enriched

ROIs measured on whole slides and on TMAs for a given
sample (Sample A) are shown in Supplementary Fig. 1A, B,
respectively. We examined the variability in CD45
expression between each ROI and saw that expression was
similar on whole slide and TMA (Supplementary Fig. 1C).
In Supplementary Fig. 1D, we show a density plot of
standard deviation across all 44 stromal and immune mar-
kers (Table 1). The standard deviation of expression for
each protein was calculated as follows: for each sample, the
standard deviation of single proteins was calculated for all
the ROIs for the sample. Once the standard deviation was
calculated for all proteins for all samples, we visualized the
distribution of these standard deviations using ggplot2
density plots in R [37]. The distributions of standard
deviation obtained from whole slides and TMAs were
similar (Supplementary Fig. 1D).

Across all four samples, intraclass correlation coefficients
(ICCs) were good to excellent between single sample ROIs in
whole slides (0.837–0.949) and in TMAs (0.844–0.938).
Concordance was also excellent between TMAs and slides
(0.829–0.916). Our results suggest that efficient immunopro-
filing processing of hundreds of samples using TMAs is fea-
sible, due to similarity in expression profiles between whole
tissue and TMAs when focusing on epithelium-enriched
regions. For calculating the ICC within either whole slide
ROIs per sample only or TMA ROIs per sample only, a one-
way random effects model was chosen, with single unit mea-
sures and assaying agreement. For comparing the average
protein expression for a sample in slides versus TMAs, a test-
retest approach was used. The one-way random effects model
was chosen, with average measures and assaying agreement.

For validation of ROI selection criteria, the expression of
two B-cell lineage-specific antigens, CD19 and CD20, was
compared. These markers are expressed on the surface of
mature B cells and are often used together to measure human
B-cell populations [46]. In addition, tumor-infiltrating B cells
in breast cancer have been associated with improved clinical
outcomes [20, 47], and may provide an interesting avenue of
future biomarker study in the CBCS. CD19 expression was
analyzed with by IF (PA0843, Leica, RTU) on the TMAs

Table 1 Complete list of 44
markers used in NanoString
GeoMx® Digital Spatial
Profiling (DSP).

Immune, stroma, and tumor markers Housekeeping Negative control

4-1BB CD20 CD45 FAPalpha OX40L GAPDH MsIgG1

ARG1 CD25 CD45RO Fibronectin PanCk Histone H3 MsIgG2a

B7-H3 CD27 CD56 FOXP3 PD-1 S6 RbIgG

B2M CD3 CD66b GITR PD-L1

CD11c CD34 CD68 GZMB PD-L2

CD127 CD4 CD8 HLA-DR SMA

CD14 CD40 CD80 ICOS STING

CD163 CD44 CTLA4 IDO1 Tim-3

Ki-67 LAG3 VISTA
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used for DSP analysis. The log2-transformed total CD19-
positive cells counts were compared to log2-transformed,
normalized CD20 values from DSP. The correlation between
the expression of the two separate B-cell markers analyzed
with different methodologies is shown in Supplementary
Fig. 1E (R squared= 0.3244, p < 0.0001). In addition to the
CD19 vs. CD20 analysis, we confirmed correlations between
the multiplexed protein quantitation and standard IHC for ER,
PR, and HER2 (ER, r= 0.978; PR, r= 0.934; HER2,
r= 0.993).

Results

Whole slide analysis of intratumoral immune
marker heterogeneity

To measure differences in immune marker expression on
whole slides, we selected six whole tumor slides with

evidence of >1% infiltrating immune cells, including three
invasive breast cancers of Basal-like and three of the
Luminal A subtype (as defined by central IHC) [33]. A
board-certified pathologist (BCC), identified 12 ROIs per
slide, including areas heavily infiltrated with CD45 cells
(i.e., “immune hot spots”) and areas with little evidence of
CD45-positive immune infiltration (“epithelium-enriched
regions”). Figure 1 shows selected ROIs with CD45 (leu-
kocytes), CD68 (macrophages), and pan-Cytokeratin (tumor
cells) IF markers to visualize regions.

Using NanoString GeoMx® DSP, 44 targets for immune
and stromal markers (Table 1), with an additional 11 tumor
and proliferation markers, were measured. After normal-
ization to control for ROI size, unsupervised hierarchical
clustering was performed and heatmap visualization
revealed two main clusters of protein expression, largely
split by whether CD45/CD68 levels were high (indicating
immune “hot spot”) or pan-Cytokeratin levels were high
(indicating epithelium enrichment) (Fig. 1C).

Fig. 1 Subtype immune
marker heterogeneity is
apparent in epithelium-
enriched regions versus
immune hot spots.
A Representative whole tumor
slide stained with CD45 (red),
CD68 (yellow), and pan-
Cytokeratin (green), in addition
to 61 oligo-conjugated
antibodies for immune and
tumor cell markers. B Regions
of interest (ROIs) were selected
based on cellularity, large (650
µm), medium (500 µm), and
small (300 µm). C Heatmap of
protein expression for whole
slide dataset with
immunohistochemistry (IHC)
subtype and cellularity labeled.
Protein class clusters are
denoted by colored bars and
branches, with dark blue
denoting stromal proteins, light
blue denoting T-cell and
immune activation markers, and
pink denoting
immunosuppressive markers.
D, E Volcano plots for Basal-
like vs. Luminal A subtypes
were run separately for
(D) immune hot spot ROIs and
(E) epithelium-enriched ROIs.
Data points are represented as
black dots with annotation for
markers with q < 0.05 and fold
change > 2. Dashed lines
indicate the cut-off q < 0.05 and
fold change < 2.
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To assess whether there were differences in immune
profile by breast cancer subtype, we performed supervised
analysis. Within immune hot spots, there were few sig-
nificant differences between Basal-like and Luminal A
tumors (Fig. 1D), whereas in epithelium-enriched regions,
there were substantial differences in immune marker
expression by subtype (Fig. 1E). In epithelium-enriched
regions, suppressive immune markers and markers of pro-
liferation were significantly more highly expressed in Basal-
like tumors, whereas in immune hot spots, only a single
anti-apoptotic marker (Bcl-2) was more highly expressed in
Basal-like tumors.

Many of the immune cell types that were evaluated had
multiple markers GeoMx® ImmunoOncology Assay,
facilitating the development of cell type scores to estimate
the abundance of immune cell populations in the tumor
microenvironment. We assessed various immune cell
scores based on the median expression across multiple,
related immune markers. For example, the median
expression of CD8 and Granzyme B (GZMB) was used to

create a CD8+ T-cell score. Within immune hot spots,
there were no significant differences in the value of scores
for CD8+ T-cell, B cells, macrophages, dendritic cells,
and Tregs across tumor subtypes. However, within
epithelium-enriched regions, Treg scores (based on CD4,
CD25, and FOXP3 protein expression) were significantly
higher in Basal-like samples compared to Luminal A
tumors (Fig. 2A).

Scaling measurement of epithelium-enriched
immune expression to TMAs

To confirm these patterns within a larger dataset, we
extended the DSP technology to TMAs. Comparing 14
Basal-like to 31 Luminal A cases, we identified immune
profiles associated with each subtype. Similar to the find-
ings with the whole slides, the Treg multi-marker score was
significantly higher in Basal-like versus Luminal A tumors
(Fig. 2B). Furthermore, the Treg score discriminated
between Basal-like and Luminal A cases with 92.9%

Fig. 2 Treg marker expression
is higher in Basal-like tumors.
A T regulatory (Treg) signatures
were higher in Basal-like tumors
compared to Luminal A tumors
only in epithelium-enriched
(p= 0.02) areas but not in
immune-high regions (p= 0.86).
B Higher Treg signature
expression in Basal-like tumors
in tissue microarrays (TMAs)
(p= 0.0078). C Receiver
operating characteristic (ROC)
analysis shows 92.9% sensitivity
in Basal-like versus Luminal A
classification based on Treg

signature expression. D
Significant differences in
immune marker expression
between Luminal A and Basal-
like tumors in TMAs. Volcano
plot of Basal-like versus
Luminal A. Data points are
represented as black dots with
annotation for markers with q <
0.05 and fold change > 2.
Dashed lines indicate the cut-off
q < 0.05 and fold change < 2.
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sensitivity in a ROC analysis (Fig. 2C). We next performed
supervised analysis of immune marker expression by sub-
type and found significant upregulation of several other
immune markers in Basal-like versus Luminal A (Fig. 2D).
While the emphasis of this study was on identifying mar-
kers for Basal-like immune response, we also explored
qualitative differences in immune marker expression
between Luminal A and Luminal B tumors and high risk of
recurrence vs. low risk of recurrence (ROR-P) (Supple-
mentary Fig. 2), though sample size and power were lim-
ited. We observed a tendency towards higher immune
marker expression in Luminal B and high risk of recurrence
tumors.

Discussion

Studying immune marker expression in both whole slides
and TMAs, we found that epithelium-enriched regions show
significant differences in immune marker expression by
breast cancer subtype. Compared to Luminal A tumors,
Basal-like breast cancers have higher expression of Treg

markers, as well as a number of other immune and pro-
liferation markers. In contrast, the ability to detect subtype-
specific immune marker expression appeared to be obscured
in areas with overall high immune marker expression. This
suggests that in bulk tissue studies, some subtype-specific
differences may be obscured due to the complex patterns of
immune response in the whole section.

Our results validate a number of studies showing that
Tregs are more highly infiltrated in triple-negative and Basal-
like breast cancer [48–54]. Interestingly, we did not observe
Treg differences in immune hot spots. This may provide an
explanation for null findings and/or lack of focus on Tregs in
previous bulk tissue studies of breast cancer, which have
instead focusing on CD8+ T cells and macrophages
[8, 23, 55]. Treg differences may have been missed in those
studies if hot spots and epithelial rich sections are averaged.
To contextualize our finding about the importance of Tregs in
Basal-like cancers, we note that infiltrating Tregs, marked by
their expression of Forkhead box protein P3 (FOXP3), have
been reported to be prognostic in breast cancer [56]. Spe-
cifically the presence of Tregs is a poor prognostic indicator
in ER+ breast cancer, but a favorable prognostic factor in
HER2+/ER− disease [56].

There were several strengths of this study, both technical
and substantive. First, our data preserved spatial context and
simultaneously evaluated multiple immune biomarkers.
Interestingly, both context and multiplex may be important;
the combination of Treg markers as a score showed impor-
tant subtype-specific differences, even though not all the
individual markers for Tregs were significantly different.
These data help validate a novel method and identify

sampling strategies for future immunoprofiling of breast
cancers. Second, we also technically confirmed correlations
between the multiplexed protein quantitation and standard
IHC for ER, PR, and HER2 and evaluated intratumoral
heterogeneity to inform our sampling strategy. We were
able to compare whole slides and TMAs from the same
breast cancers and confirm that TMAs are appropriate for
studying the tumor immune microenvironment. Our results
also align with at least one other study of breast cancer
[27, 57] in showing that epithelium-enriched regions show
important immune response information. Third, we used a
well-annotated data source representing a diversity of
patients. Finally, despite a limited sample size, we were able
to show significant differences in Basal-like vs. Luminal
breast cancer, implying that future studies with larger
datasets will provide even greater understanding of
differences.

There were some limitations of our analysis. We recog-
nize that this approach does not provide evidence of marker
co-localization studies, which is partially offset by using
multiple markers [58–63] (e.g., Treg markers CD4, CD25,
and FOXP3) as a proxy for a single-cell type. We also were
unable to compare RNA-based molecular subtypes because
data were not available for 35% of cases on our TMAs. We
also lacked power to assess differences by race and age.
Future expanded analyses should evaluate differences in
immune response by race and in association with breast
cancer progression. Previous studies in The Cancer Genome
Atlas did not find strong differences in the breast cancer
immune microenvironment by race, but this research was
also limited by a small number of Black patients [64]. We
performed ROC curve analysis to test whether an immune
score, such as the Treg score, has value in predicting sub-
type, but we acknowledge that we have limited sample size
and therefore these analyses may not be stable estimates.
Finally, we acknowledge that we were unable to use ROI
masking effectively. Previous studies have used masking to
profile immune hot spots [24, 25], however this type of
masking is impractical in breast tumors, where regions of
immune infiltration tend to be segregated by stromal or
epithelial components.

In summary, this work demonstrated that TMAs are a
viable approach for immunoprofiling, providing resolu-
tion that would be missed in single-marker studies and in
bulk tissue studies. This finding is particularly impactful
for large cancer epidemiological studies, which often have
scarce whole slide tissue and/or only retained TMAs with
epithelium-enriched cores. This work represents a first
step toward developing feasible immunoprofiling
approaches that could be conducted on a large scale, and
ultimately combined with genomic datasets, to improve
breast cancer prognostics and identify new therapeutic
opportunities.
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