SECISBP2 is a novel prognostic predictor that regulates selenoproteins in diffuse large B-cell lymphoma

Abstract

The overexpression of glutathione peroxidase 4 (GPX4; an enzyme that suppresses peroxidation of membrane phospholipids) is considered a poor prognostic predictor of diffuse large B-cell lymphoma (DLBCL). However, the mechanisms employed in GPX4 overexpression remain unknown. GPX4 is translated as a complete protein upon the binding of SECISBP2 to the selenocysteine insertion sequence (SECIS) on the 3′UTR of GPX4 mRNA. In this study, we investigated the expression of SECISBP2 and its subsequent regulation of GPX4 and TXNRD1 in DLBCL patients. Moreover, we determined the significance of the expression of these selenoproteins in vitro using MD901 and Raji cells. SECISBP2 was positive in 45.5% (75/165 cases) of DLBCL samples. The SECISBP2-positive group was associated with low overall survival (OS) as compared to the SECISBP2-negative group (P = 0.006). Similarly, the SECISBP2 and GPX4 or TXNRD1 double-positive groups (P < 0.001), as well as the SECISBP2, GPX4, and TXNRD1 triple-positive group correlated with poor OS (P = 0.001), suggesting that SECISBP2 may serve as an independent prognostic predictor for DLBCL (hazard ratio (HR): 2.693, P = 0.008). In addition, western blotting showed a decrease in GPX4 and TXNRD1 levels in SECISBP2-knockout (KO) MD901 and Raji cells. Oxidative stress increased the accumulation of reactive oxygen species in SECISBP2-KO cells (MD901; P < 0.001, Raji; P = 0.020), and reduced cell proliferation (MD901; P = 0.001, Raji; P = 0.030), suggesting that SECISBP2-KO suppressed resistance to oxidative stress. Doxorubicin treatment increased the rate of cell death in SECISBP2-KO cells (MD901; P < 0.001, Raji; P = 0.048). Removal of oxidative stress inhibited the altered cell death rate. Taken together, our results suggest that SECISBP2 may be a novel therapeutic target in DLBCL.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Immunohistochemical analysis of SECISBP2 and selenoprotein.
Fig. 2: Overall survival of patients based on the expression of SECISBP2 and selenoproteins.
Fig. 3: In vitro characteristics of SECISBP2.

References

  1. 1.

    National Cancer Institute, Surveillance Research Program: SEER cancer statistics review (CSR), 1975-2014. 2020. https://seer.cancer.gov/csr/1975_2014/.

  2. 2.

    National Cancer Center: 2019 cancer statistics forecast. https://ganjoho.jp/reg_stat/statistics/stat/short_pred.html.

  3. 3.

    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017.

  4. 4.

    Kinowaki Y, Kurata M, Ishibashi S, Ikeda M, Tatsuzawa A, Yamamoto M, et al. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab Investig. 2018;98:609–19.

    CAS  Article  Google Scholar 

  5. 5.

    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, et al. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–43.

    CAS  Article  Google Scholar 

  6. 6.

    Arnér ES. Selenoproteins-what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res. 2010;316:1296–303.

    Article  Google Scholar 

  7. 7.

    Fradejas-Villar N. Consequences of mutations and inborn errors of selenoprotein biosynthesis and functions. Free Radic Biol Med. 2018;127:206–14.

    CAS  Article  Google Scholar 

  8. 8.

    Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 2000;19:306–14.

    CAS  Article  Google Scholar 

  9. 9.

    Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, et al. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 2000;1:158–63.

    CAS  Article  Google Scholar 

  10. 10.

    Squires JE, Stoytchev I, Forry EP, Berry MJ. SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. Mol Cell Biol. 2007;27:7848–55.

    CAS  Article  Google Scholar 

  11. 11.

    Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007;8:R198.

    Article  Google Scholar 

  12. 12.

    Turanov AA, Lobanov AV, Hatfield DL, Gladyshev VN. UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins. Nucleic Acids Res. 2013;41:6952–9.

    CAS  Article  Google Scholar 

  13. 13.

    Latrèche L, Duhieu S, Touat-Hamici Z, Jean-Jean O, Chavatte L. The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element. RNA Biol. 2012;9:681–90.

    Article  Google Scholar 

  14. 14.

    Berry MJ, Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Martin GW 3rd, et al. Selenocysteine incorporation directed from the 3′UTR: characterization of eukaryotic EFsec and mechanistic implications. Biofactors. 2001;14:17–24.

    CAS  Article  Google Scholar 

  15. 15.

    Chiba S, Itoh Y, Sekine S, Yokoyama S. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Mol Cell. 2010;39:410–20.

    CAS  Article  Google Scholar 

  16. 16.

    Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, et al. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature. 1991;353:273–6.

    CAS  Article  Google Scholar 

  17. 17.

    Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    CAS  Article  Google Scholar 

  18. 18.

    Hafer K, Schiestl RH. Biological aspects of dichlorofluorescein measurement of cellular reactive oxygen species. Radiat Res. 2008;170:408.

    CAS  Article  Google Scholar 

  19. 19.

    Grinberg YY, van Drongelen W, Kraig RP. Insulin-like growth factor-1 lowers spreading depression susceptibility and reduces oxidative stress. J Neurochem. 2012;122:221–9.

    CAS  Article  Google Scholar 

  20. 20.

    Vessey DA, Lee KH, Blacker KL. Characterization of the oxidative stress initiated In cultured human keratinocytes by treatment with peroxides. J Investig Dermatol. 1992;99:859–63.

    CAS  Article  Google Scholar 

  21. 21.

    Squires JE, Berry MJ. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life. 2008;60:232–5.

    CAS  Article  Google Scholar 

  22. 22.

    Carlson BA, Lee BJ, Tsuji PA, Tobe R, Park JM, Schweizer U, et al. Selenocysteine tRNA [Ser]Sec: from nonsense suppressor tRNA to the quintessential constituent in selenoprotein biosynthesis. In: Hatfield DL, Tsuji PA, and Gladyshev VN, editors. Selenium: its molecular biology and role in human health. 4th ed. New York, NY: Springer Science+Business Media LLC, 2016. p. 3–12.

  23. 23.

    Bulteau AL, Chavatte L. Update on selenoprotein biosynthesis. Antioxid Redox Signal. 2015;23:775–94.

    CAS  Article  Google Scholar 

  24. 24.

    Donovan J, Copeland PR. Threading the needle: getting selenocysteine into proteins. Antioxid Redox Signal. 2010;12:881–92.

    CAS  Article  Google Scholar 

  25. 25.

    Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 2000;19:4796–805.

    CAS  Article  Google Scholar 

  26. 26.

    Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol. 2008;180:579–95.

    CAS  Article  Google Scholar 

  27. 27.

    Zhao W, Bohleber S, Schmidt H, Seeher S, Howard MT, Braun D, et al. Ribosome profiling of selenoproteins in vivo reveals consequences of pathogenic Secisbp2 missense mutations. J Biol Chem. 2019;294:14185–200.

    CAS  Article  Google Scholar 

  28. 28.

    Fradejas-Villar N, Seeher S, Anderson CB, Doengi M, Carlson BA, Hatfield DL, et al. 66 The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay. Nucleic Acids Res. 2017;45:4094–107.

    CAS  Article  Google Scholar 

  29. 29.

    Seeher S, Atassi T, Mahdi Y, Carlson BA, Braun D, Wirth EK, et al. Secisbp2 is essential for embryonic development and enhances selenoprotein expression. Antioxid Redox Signal. 2014;21:835–49.

    CAS  Article  Google Scholar 

  30. 30.

    Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Investig. 2010;120:4220–35.

    CAS  Article  Google Scholar 

  31. 31.

    Azevedo MF, Barra GB, Naves LA, Velasco LFR, Castro PGG, de Castro LCG, et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab. 2010;95:4066–71.

    CAS  Article  Google Scholar 

  32. 32.

    Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta. 2013;1830:3987–4003.

    CAS  Article  Google Scholar 

  33. 33.

    Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol. 2017;47:57–66.

    CAS  Article  Google Scholar 

  34. 34.

    Schenk B, Fulda S. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene. 2015;34:5796–806.

    CAS  Article  Google Scholar 

  35. 35.

    Harris IS, Brugge JS. Cancer: the enemy of my enemy is my friend. Nature. 2015;527:170–1.

    CAS  Article  Google Scholar 

  36. 36.

    Kiebala M, Skalska J, Casulo C, Brookes PS, Peterson DR, Hilchey SP, et al. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp Hematol. 2015;43:89–99.

    CAS  Article  Google Scholar 

  37. 37.

    The Human Protein Atlas. http://www.proteinatlas.org.

  38. 38.

    TCGA Research Network. https://www.cancer.gov/tcga.

  39. 39.

    Budiman ME, Bubenik JL, Miniard AC, Middleton LM, Gerber CA, Cash A, et al. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol Cell. 2009;35:479–89.

    CAS  Article  Google Scholar 

  40. 40.

    Chavatte L, Brown BA, Driscoll DM. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol. 2005;12:408–16.

    CAS  Article  Google Scholar 

  41. 41.

    Miniard AC, Middleton LM, Budiman ME, Gerber CA, Driscoll DM. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression. Nucleic Acids Res. 2010;38:4807–20.

    CAS  Article  Google Scholar 

  42. 42.

    Donovan J, Copeland PR. Selenocysteine insertion sequence binding protein 2L is implicated as a novel post-transcriptional regulator of selenoprotein expression. PLoS ONE. 2012;7:e35581.

    CAS  Article  Google Scholar 

  43. 43.

    Shetty SP, Copeland PR. Selenocysteine incorporation: a trump card in the game of mRNA decay. Biochimie. 2015;114:97–101.

    CAS  Article  Google Scholar 

  44. 44.

    Silva AL, Romão L. The mammalian nonsense-mediated mRNA decay pathway: To decay or not to decay! Which players make the decision? FEBS Lett. 2009;583:499–505.

    CAS  Article  Google Scholar 

  45. 45.

    Min Z, Guo Y, Sun M, Hussain S, Zhao Y, Guo D, et al. Selenium-sensitive miRNA-181a-5p targeting SBP2 regulates selenoproteins expression in cartilage. J Cell Mol Med. 2018;22:5888–98.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 18K07063).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kouhei Yamamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taguchi, T., Kurata, M., Onishi, I. et al. SECISBP2 is a novel prognostic predictor that regulates selenoproteins in diffuse large B-cell lymphoma. Lab Invest (2020). https://doi.org/10.1038/s41374-020-00495-0

Download citation

Search