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Abstract

As defined by the World Health Organization, an endocrine disruptor is an exogenous substance or mixture that alters
function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, its progeny, or
(sub)populations. Traditional experimental testing regimens to identify toxicants that induce endocrine disruption can be
expensive and time-consuming. Computational modeling has emerged as a promising and cost-effective alternative method
for screening and prioritizing potentially endocrine-active compounds. The efficient identification of suitable chemical
descriptors and machine-learning algorithms, including deep learning, is a considerable challenge for computational
toxicology studies. Here, we sought to apply classic machine-learning algorithms and deep-learning approaches to a panel of
over 7500 compounds tested against 18 Toxicity Forecaster assays related to nuclear estrogen receptor (ERa and ER)
activity. Three binary fingerprints (Extended Connectivity FingerPrints, Functional Connectivity FingerPrints, and
Molecular ACCess System) were used as chemical descriptors in this study. Each descriptor was combined with four
machine-learning and two deep- learning (normal and multitask neural networks) approaches to construct models for all 18
ER assays. The resulting model performance was evaluated using the area under the receiver- operating curve (AUC) values
obtained from a fivefold cross-validation procedure. The results showed that individual models have AUC values that range
from 0.56 to 0.86. External validation was conducted using two additional sets of compounds (n =592 and n = 966) with
established interactions with nuclear ER demonstrated through experimentation. An agonist, antagonist, or binding score
was determined for each compound by averaging its predicted probabilities in relevant assay models as an external
validation, yielding AUC values ranging from 0.63 to 0.91. The results suggest that multitask neural networks offer
advantages when modeling mechanistically related endpoints. Consensus predictions based on the average values of
individual models remain the best modeling strategy for computational toxicity evaluations.

Introduction

Estrogen receptors (ERs) play essential roles in cell differ-
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entiation [1], reproductive function [2—4], and morphogen-
esis [4]. ERs exist in two major subclasses: those that act via
a classical genomic mechanism of transcriptional regulation
(nuclear ERa and ERp) and those that act via nonclassical
mechanisms (estrogen-related receptors and membrane-
bound G-protein-coupled ERs) [5]. Nuclear ERa has a
large binding pocket, which allows for nonspecific ER
binding by compounds that are estrogen-like [6]. In the
classical genomic mechanism, nuclear ERa or ERp binds to
an estrogenic compound. This ligand binding triggers a
conformational change and activates the receptor [1, 4, 7].
Two activated nuclear ERs can then dimerize, bind to the
estrogen-response element (ERE) promoter region on the
cell’s DNA, and recruit cofactors required for transcription
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[1, 7]. The resulting increased production of mRNA can
trigger cell proliferation downstream [7]. This cell pro-
liferation has been linked to adverse effects such as uterine
and breast cancers [4, 8]. Therefore, screening new com-
pounds (e.g., drugs as well as commercial and personal care
products) for undesired nuclear ER interactions early in
development may be valuable.

Traditional experimental testing to identify toxicants relies
on costly and time-consuming in vivo animal testing, which is
impractical to efficiently assess the toxicity potential of the
tens of thousands of registered compounds that require
screening [9]. Computational modeling and in vitro high-
throughput screening (HTS) assays are promising alternative
methods for toxicity evaluation. However, traditional com-
putational methods, such as quantitative structure—activity
relationship (QSAR) models, often have limitations when
they were developed by using small datasets. QSAR models
trained with datasets of insufficient size are limited by narrow
coverage of chemical space [10], activity cliffs [11], and
overfitting [12], which in turn reduces their utility for pre-
dicting more complex chemical modes of action.

Over the past 20 years, deep learning emerged as an
integral field of machine learning, especially with regard to
the processing of big data [13]. Deep learning has advanced
many fields, including voice and image recognition, lan-
guage processing, and bioinformatics [14]. Most current
deep- learning studies employ biologically inspired deep
neural networks (DNNs) [15]. Both classic QSAR models
and DNNs usually undergo training to predict a single
activity (e.g., a single-toxicity endpoint). However, many
toxicologically relevant modes of action require complex
biological pathway perturbations to elicit an adverse biolo-
gical effect, and consequently, the evaluation of the overall
potential of a compound to exert an adverse outcome
requires the prediction of multiple biological endpoints in a
comprehensive manner. Multitask learning allows for the
development of models that can simultaneously predict
multiple activities, and is a potential solution to this chal-
lenge. The application of a multitask-learning approach can
improve the ability of a model developed for related end-
points to generalize to new compounds due to information
sharing during model development, thereby increasing pre-
diction accuracy on new compounds. Successful modeling
efforts using both normal and multitask deep learning
demonstrate the potential for this technique to improve drug
discovery [16-19] and toxicology [20, 21]. However, cur-
rently, no universal criteria for the selection of machine-
versus deep-learning methods exist [22-26].

The development of in vitro testing protocols using robots
[27] rather than humans allows for the rapid generation
of data through HTS programs, advancing computational
modeling into a big-data era [28-33]. One of the first sig-
nificant HTS programs in toxicology was the Environmental

Protection Agency (EPA) Toxicity Forecaster (ToxCast)
initiative, which used an extensive battery of HTS assays to
screen over 1000 compounds [34, 35]. The success of Tox-
Cast led to the development of the Toxicity in the 21st
Century (Tox21) collaboration of the EPA, Food and Drug
Administration (FDA), National Center for Advancing
Translational Sciences, and National Toxicology Program,
which has a goal of testing ~10,000 compounds in HTS
assays [36-38]. The direct result of these HTS efforts is the
generation of large datasets that researchers can use in com-
putational toxicity-modeling studies.

The availability of big data in public repositories brings
urgent needs for researchers to create innovative computa-
tional models that can overcome the limitations associated
with models based on small datasets. The application of
nonanimal models for toxicity evaluation using computa-
tional toxicology is becoming feasible with newly developed
algorithms and modeling strategies [39—44]. Recently,
Browne et al. [42] and Judson et al. [43] described models
trained using a subset of 18 ToxCast and Tox21 in vitro
assays that are mechanistically relevant to the classical ER
pathway. However, despite the success of these models, they
require experimental concentration-response data, which
make them inapplicable to new, untested compounds for
which only structural information is available. Our goal was
to address these limitations by evaluating machine- and deep-
learning approaches for their ability to predict compound
activity using models based on mechanistically related suites
of assays. In this study, we assessed the applicability of
traditional machine-learning (ML) algorithms and deep-
learning approaches, including multitask learning with
DNNs, to model these 18 mechanistic in vitro assays
addressing ER pathway perturbations. The consensus pre-
dictions from averaging the predicted probabilities in relevant
assays showed advantages compared with individual models,
including multitask-learning models. The agonist, antagonist,
or binding score was determined for new compounds based
on consensus predictions and compared with their known
experimental in vitro and in vivo toxicities. The results from
this study suggest that a lack of universal criteria for chemical
descriptor and algorithm selection for computational tox-
icology modeling continues to exist, and consensus predic-
tions will still be the best strategy for computational chemical
toxicity evaluation purposes.

Materials and methods
ER HTS assay dataset
The toxicity dataset used for modeling is the output of

18 high-throughput in vitro assays from the ToxCast and
Tox21 programs (Table 1) [42, 43]. In total, the ToxCast
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and Tox21 programs tested 8589 compounds against these
18 assays. However, the chemical fingerprints calculated in
this study are two-dimensional, which exclude the differ-
ences between stereoisomers and cannot deal with inorganic
compounds. Therefore, the chemical structures needed
further curation before modeling. The CASE Ultra v1.8.0.0
DataKurator tool was used to accomplish this chemical
structure standardization. All salts and mixtures were
separated into their constituent parts, and the largest organic
fraction was kept. Compounds with duplicate structures but
different activities in the same assays were evaluated, and
the compound with the most active responses across all
assays was retained. Compounds with missing/inconclusive
results in all 18 assays were removed from the dataset.

The final dataset used for modeling in this study con-
sisted of 7576 unique compounds, each of which showed
conclusive active or inactive test results in at least one of the
18 nuclear ER-related in vitro assays (Supplementary
Table SI). Inconclusive results were treated as missing data
for modeling purposes. Each chemical was assigned an
activity vector consisting of 18 active, inactive, or missing/
inconclusive results for all assays.

Chemical descriptors

Three types of two-dimensional binary chemical finger-
prints, Molecular ACCess System (MACCS), Extended
Connectivity FingerPrint (ECFP), and Functional Con-
nectivity FingerPrint (FCFP) descriptors, were generated for
all compounds in Python v3.6.2 using the cheminformatics
package RDKit v2017.09.1 (http://rdkit.org/). MACCS
descriptors are a set of 167 fingerprints based on chemical
substructures widely used in cheminformatics modeling
[45]. ECFP and FCFP descriptors are substructure finger-
prints calculated using a modified version of the Morgan
algorithm (i.e., by evaluating the environment surrounding
particular atoms in a molecule using a specified bond
radius) [46]. FCFP descriptors can represent functional
group information about a molecule rather than a specific
substructure, whereas ECFP descriptors can represent spe-
cific chemical information about a molecule. For example,
FCFP descriptors detect the presence of an aryl halide rather
than the specific presence of chlorine bonded to a benzene
ring that ECFP descriptors detect. In this study, 1024 ECFP
and FCFP descriptors were calculated for all compounds
using a bond radius of 3.

QSAR model development

Four ML algorithms were used to develop QSAR models
for each ToxCast assay endpoint: Bernoulli Naive Bayes
(BNB), k-Nearest Neighbors (kKNN), Random Forest (RF),
and Support Vector Machines (SVM). In this study, all four

ML algorithms were implemented in Python v3.6.2 using
scikit-learn v0.19.0 (http://scikit-learn.org/) [47]. Briefly,
BNB models apply Bayes’ theorem to datasets with binary
features by “naively” assuming that features are indepen-
dent of one another [48]. kNN models learn and predict a
compound based on the activities of its kNN calculated by a
subspace similarity search [49]. RF models are ensemble
models that construct a series of decision trees using a
random selection of features and training set compounds
[50]. RF models ultimately produce an average of the out-
put from each decision tree to prevent overfitting. SVM
models represent training compounds in the descriptor
space, and attempt to locate the optimal hyperplane that
separates active and inactive compounds [51]. The ML
algorithms were tuned to identify the optimal input para-
meters for model performance, as described previously [23].
Briefly, hyperparameters, or any other parameters set before
model training, were optimized using an exhaustive grid-
search algorithm [23]. Each ML algorithm was fit to the ER
HTS training data using each possible set of hyperpara-
meters to identify the best-performing model. The model
with the best combination of hyperparameters was retained
and then used for the prediction of the test set.

Both normal and multitask DNNs were implemented in
Python v3.6.2 using keras v2.1.2 (http://keras.org) and
TensorFlow v1.4.0 (https://www.tensorflow.org/). DNNs
consist of an input layer that contains information about the
features of the data, such as chemical fingerprints, used to
train the model, and an output layer, which is a prediction
for the activity of interest [15]. A series of “dense” layers
connect the input and output layers, such that every node in
each layer shares a weighted connection with every node in
the previous and next layers. These weighted connections
undergo optimization in the model-training process. All
DNNs in this study were implemented with three hidden
layers of width equal to the number of fingerprints in the
input layer (i.e., 167 for MACCS descriptors and 1024 for
ECFP and FCFP descriptors). Before model training, the
weights between the neurons of each layer were randomly
initiated using the He normal method [52]. These weights
were optimized during training to achieve the minimum
binary cross-entropy. To this end, the following standard
deep-learning methods were implemented: stochastic gradient
descent optimization [53] (learning rate =0.01, Nesterov
momentum [54] =0.9), rectified linear unit hidden-layer
activation [55], and automatic learning-rate reduction [56]
(90% reduction upon 50 consecutive epochs with no loss
improvement, minimum = 0.0001). Dropout [57] (rate = 0.5)
and L, [58] (#=0.001) regularizations and early stopping
[59] (upon 200 epochs with no loss improvement) were
implemented to avoid overfitting. The model output layer
used a sigmoid- activation function [60] so that the predicted
result was interpretable as a probability.

SPRINGER NATURE
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Model performance was evaluated using the area under
the receiver-operating curve (ROC) metric (AUC). Each
model developed in this study computes a probability that a
tested compound will be active in a given bioassay. Tested
compounds are classified as active when they exceed a
determined probability threshold. The ROC curve for model
performance is a plot of the true- positive rate (Eq. 1)
against the false-positive rate (Eq. 2) using various prob-
ability thresholds for the classification of active compounds
[61]. The area under this plotted curve (AUC) is
interpretable as a measure of the likelihood of a model to
distinguish active from inactive compounds correctly.
An AUC of 0.5 represents a random model performance as
the baseline. The AUC is a suitable metric for this study due
to the highly imbalanced nature of the assay data used to
train the models. In modeling studies using imbalanced
datasets (e.g., HTS assay data), the default probability
threshold of 0.5 is not always appropriate [62]. Using
the AUC as an evaluation method takes this consideration
into account by evaluating model performance at several
different probability thresholds.

True positives
TPR = — —, (1)
True positives + False negatives
FPR — False positives 2)

False positives + True negatives

External validation

The developed models can be used to predict new com-
pounds to prove their predictivity. To this end, external
validation was performed using two datasets: the Colla-
borative Estrogen Receptor Activity Prediction Project
(CERAPP) in vitro agonist, antagonist, and binding datasets
[63] and the Estrogenic Activity Database (EADB) in vivo
rodent uterotrophic dataset [64]. Before model validation, the
CASE Ultra v1.8.0.0 DataKurator tool was used to prepare
the structures of new compounds as previously described.
Only the new compounds not existing in the training dataset
were kept. The final curated CERAPP in vitro agonist,
antagonist, and binding validation sets contained 368, 264,
and 569 compounds, respectively (Supplementary Table SII).
The final curated EADB in vivo rodent uterotrophic agonist
validation set contained 966 compounds (Supplementary
Table SIII).

Three new parameters were created to evaluate a che-
mical’s potential to act as a nuclear ER agonist, antagonist,
or binder based on its predicted activity in relevant assays:
agonist score (Ssg, Eq. 3), antagonist score (Sa.:, Eq. 4), and
binding score (Sp, Eq. 5). In these equations, P(Ai) is the
probability for a predicted compound to be active in Assay
i. The 18 total assays contain 16 agonism assays (A1-A16),
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13 antagonism assays (Al-All, Al7, and AlS8), and 11
binding assays (A1-A11). These three parameters integrate
relevant models of ER agonism, antagonism, and binding to
evaluate new compounds for their toxicity potential at
nuclear ERs. The performance of models during external
validation was evaluated using ROC curve plots and AUC
calculations, as previously described for the cross-validation
procedure.
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Figure 1 shows a summary of the 7576 unique compounds
tested against at least one of the 18 ToxCast and Tox21 nuclear
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Fig. 1 Summary of estrogen receptor high-throughput screening
dataset. Distributions of compounds in the ToxCast and Tox21 dataset
(n =7576) by the number of conclusive active or inactive results per
compound (top) and individual assay datasets (n = 18) by the number
of active and inactive compounds (bottom).
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ER-related in vitro assays. HTS assay data usually contain
missing and inconclusive data points, and the results are biased
(i.e., more inactive than active) [28, 29]. In total, these com-
pounds consist of over 53,000 total conclusively active or
inactive assay hit calls, indicating that missing/inconclusive
results exist in the dataset. The results show a diverse number
of conclusive activities per compound, ranging from 2 to 18 hit
calls in these assays (Fig. 1a). Only 476 compounds showed
conclusive results for all 18 assays, representing 6.3% of the
full dataset. The low active response ratio across all assays (i.e.,
the active ratio ranges from 1:16 to 1:3) compared with inac-
tive responses reflects the nature of HTS results for chemical
toxicity testing [28, 29]. Furthermore, no individual assay has
conclusive results for all 7576 compounds. Instead, the size of
each assay dataset ranges from 883 to 7263 compounds,
depending on the assay nature (Table 1, Fig. 1b). For example,
NVS_NR_bER (A1, 1004 compounds), NVS_NR_hER (A2,
1076 compounds), and NVS_NR_mERa (A3, 883 com-
pounds) show the lowest number of tested compounds, and
they are NovaScreen assays. TOX21_ERa BLA_Agonis-
t_ratio (Al4), TOX21_ERa_LUC_BGI_Agonist (Al5),
TOX21_ERa_BLA_Antagonist_ratio (Al7), and TOX2I_
ERa_LUC_BGI1_Antagonist (A18) are Tox21 assays that
consist of 7263 compounds with conclusive results, repre-
senting the richest individual assay datasets. Therefore, these
18 assay datasets represent a large range of data size and
chemical diversity, which are suitable for modeling studies to
evaluate the ML algorithms.

The data used in this study also show a bias toward
inactive responses. Out of the full dataset, only six of these
compounds showed active results across all 18 assays:
Bisphenol AF (CAS 1478-61-1), 2-ethylhexyl 4-hydro-
xybenzoate (CAS 5153-25-3), 4-tert-octylphenol (CAS
140-66-9), diethylstilbestrol (CAS 56-53-1), 4-cumylphenol
(CAS 599-64-4), and hexestrol (CAS 84-16-2). These six
compounds show uterotrophic activity in at least one
guideline-like study [65]. By comparison, 4698 compounds

show only inactive results in one or more of these 18 assays,
representing a majority (62.0%) of all compounds. The
individual assay datasets reveal a similar trend, with small
ratios of active versus inactive results. For example,
ATG_ERE_CIS_up (A13), which is an mRNA-induction
assay, has the highest active ratio of ~1:3. Compared with
this assay, TOX21_ERa_BLA_Agonist_ratio (A14), which
is a beta-lactamase-induction assay, has the lowest active
ratio of ~1:16. Some previous studies showed that down-
sampling to remove some inactive compounds from training
datasets was beneficial to the resulting QSAR models
[66, 67]. However, in this study, the full dataset was
retained to preserve an ample chemical space for the pre-
diction of new compounds.

QSAR model development

Four ML (BNB, kNN, RF, and SVM) and two DNN
algorithms were paired with ECFP, FCFP, and MACCS
descriptors individually to develop 18 models for each ER
assay (Fig. 2). Simpler algorithms, such as logistic regres-
sion, were not used in this study since previous studies have
shown the advantages of advanced ML algorithms [23, 68].
In total, 273 models (216 ML models, 54 normal DNN
models, and 3 multitask DNN models) were developed for
all of the ER assay data. In 2007, the Organization for
Economic Co-Operation and Development (OECD) pub-
lished a guidance document on the validation of QSAR
models developed for risk-assessment purposes [69]. The
guidelines set forth by this document require that models
undergo statistical evaluation for goodness-of-fit, robust-
ness, and predictivity, including model cross-validation
[69]. Cross-validation procedures that leave compounds out
during each iteration provide reliable model evaluations
[70]. In this study, all models were evaluated using a five-
fold cross-validation procedure, with 20% of the dataset left
out for prediction purposes during each iteration. Each

7576 Training Set

Compounds
With >1 Activity Algorithms
Valve BNB kNN  RF  SVM

Classic Machine Learning

B _

Individual
Models

Binary Fingerprints

FCFP MACCS ECFP —

0080
B —
[ 4 A 4

Normal Deep Neural Networks

i IR e e

Individual FCFP MACCS ECFP
Models

Consensus Predictions

cesee
—  099%e

Deep Neural Networks

.

Individual
Models

Fig. 2 Consensus QSAR modeling workflow used in this study. The
consensus QSAR modeling workflow employed here consists of three
main stages: generation of three sets of binary fingerprints for each
compound in the curated dataset, development of 273 total QSAR

models using classic machine-learning, normal deep neural network,
and multitask deep neural network approaches, and averaging the
resulted predictions to give one consensus prediction.
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assay dataset was randomly split into five equal subsets
maintaining the original proportion of active and inactive
responses. In this procedure, four subsets (80% of the total
compounds) were combined as a training set, and the
remaining 20% was used as a test set. This procedure
was repeated five times, such that each compound was used
in a test set one time. The six resulting models for each
assay-descriptor combination were averaged to give a
consensus prediction, as described in previous publications
[66, 71-73].

Table 2 shows the fivefold cross-validation results for
each model. The AUC values for all the resulted models
ranged between 0.562 and 0.870. The highest AUC value
ranged between 0.645 and 0.870 for each assay, indicating
that at least one descriptor—algorithm combination yielded a
satisfactory model for each endpoint. OT_ER_ER-
aFRb_0480 (A6) had the best-performing models, with
AUC values ranging between 0.609 and 0.870. Compared
with this assay, TOX21_ERa_LUC_BGI1_Agonist (A15)
and ACEA_T47D_80 h_Positive (A16) consistently had
lower-performing models with AUC values ranging
between 0.562-0.660 and 0.562-0.645, respectively. In
previous studies, QSAR model performance was high when
modeling simple endpoints (e.g., physical-chemical prop-
erties) but became lower for complex biological activities
(e.g., cellular responses) [29]. A15 and A16 are nuclear ER
agonism assays that represent protein production induced
by ER-mediated transcriptional activation [74] and the
resulting cell proliferation [75, 76] (Table 1). Among the
biological processes represented by these 18 assays, tran-
scriptional activation and cell proliferation represent the
farthest downstream processes in the classical genomic ER
signaling pathway [43], which may be the reason that they
are the most difficult to model.

Notably, no algorithm could outperform the others across
all of the 18 assay endpoints and three descriptor sets
(Table 2). However, compared with normal DNNs, multi-
task DNNs had better predictivity for 16 out of 18, 18 out of
18, and 13 out of 18 assay endpoints using MACCS, FCFP,
and ECFP descriptors, respectively (Table 2), indicating the
advantage of using multitask learning to model these
mechanistically related endpoints. The three consensus
models showed better or similar results compared with all
other algorithms. For example, when using MACCS
descriptors, the fivefold cross-validation results of the
consensus model achieved AUC values as high as 0.870,
representing the best performance for 10 out of 18 assay
endpoints (55.5%) compared with individual models. When
using the FCFP descriptors, the consensus model achieved
AUC values as high as 0.829, representing the best per-
formance for § out of 18 assay endpoints (44.4%) compared
with individual models. When using the ECFP descriptors,
the consensus model achieved AUC values as high as
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0.833, representing the best performance for 5 out of 18
assay endpoints (27.8%) compared with individual models.
No individual model showed better performance than the
consensus model across all 18 assay endpoints.

External validations

External validation is necessary to prove the predictivity of
the resulting QSAR models. An external validation proce-
dure was conducted using two new datasets: the in vitro
CERAPP dataset consisting of 368 new agonists, 264 new
antagonists, and 569 new binders, and the in vivo EADB
uterotrophic dataset consisting of 966 new agonists. Before
performing external validation, compounds that were also
included in the model-training set were removed from both
datasets, resulting in 569 and 966 unique compounds that
were not tested in the ToxCast and Tox21 ER HTS assays,
and are new to the developed models. Since each assay is
only relevant to a specific target of a binding mechanism,
using the parameters S4,, San, and Sg, which were defined
to integrate all relevant models, can estimate the estrogenic
activities of new compounds more reliably compared with
using a single QSAR model for the external compounds
(Egs. 3-5). For example, the Sp parameter represents the
likelihood of a compound to be an in vitro ER binder
(Eq. 5). This parameter includes 11 assays (A1-Al1) that
represent receptor binding [77-80], receptor dimerization
[81-83], and DNA binding [83] (Table 1). The Sy, para-
meter (Eq. 3) represents the likelihood of a compound to be
an in vitro ER agonist, and includes five additional assays
(A12-A16) that represent RNA transcription [84], protein
production [74], and cell proliferation [75, 76]. The Sy,
parameter (Eq. 4) includes all assays used to calculate Sp
and two extra assays (Al7 and A18) that represent tran-
scriptional suppression [74].

Table 3 shows the results of these external validations.
The AUC values of the prediction results using the Ssq
parameter for the new agonists in the CERAPP and EADB
datasets ranged from 0.732-0.906 and 0.640-0.802,
respectively. The highest-performing models for the CER-
APP dataset were RF models, regardless of the descriptors
used. The combination of normal DNNs with FCFP
descriptors showed the best performance for the EADB
dataset. The AUC values of the prediction results using the
Sane parameter for the new antagonists in the CERAPP
dataset ranged from 0.711 to 0.869. The highest-performing
model for this dataset used multitask DNNs with FCFP
descriptors and achieved an AUC value of 0.869. The AUC
values of the prediction of new binders in the CERAPP
dataset using the Sp parameter ranged from 0.622 to 0.754.
The highest- performing model for the CERAPP dataset
was the combination of normal DNNs with MACCS
descriptors. Although the consensus model did not show the



497

Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and...

P8L'0  I8L0 T¥90 6€90 ¢€vL0 L6900 ¥SLO OILO0 9890 €IL0 86L0 00L0 86L0 OLLO €€80 8CLO LOLO SCTLO 9dd40d
P8L'0  6LL0 8¢90 ¥¥9'0  SPL'O  00L0 <TSLO 9CLO0 T8L'O 0SL0 LT8O <TPLO 6C80 TPLO 6080 TELO0 €0L0 IVLO 9dd04
0€8°0 +I80 €90 0990 S8L0 S8IL0 V¥9L0 8CLO 6¥VL0 6¢L°0 6180 8ILO O0L80 96L0 <TS80 €0L0 6TL0 6vL0 SOOVIA SnSUIsuo)
6€L'0  SLL'O 9790 ¥I90 SEL0 0890 €CL0  ¥L90  6L9°0 9890 9LL'O  ¥69°0 I6L0 SOL0O OI80 $99°0 LL9O 1690 9dd4Dd
Lo 8vL0  8I90 SC90  YeL'0  L¥90  60L0 0CL0  9TL0 ISL'0 06L°0 SSL'O 8I80 <TELO OI80 LL9O 6890 60L0 9ddDd
8I80 SI80 €90 L¥90 I8L0 6690 I9L0 9PL'0 SLLO €€L'0 TT80 ¢€vL'0 6¥80 <TSLO €580 00L0 SOLO LOLO SOOVIN  NNA ¥seimmpy
vL90  8L90 <C6S0 VLSO 0650 ¥C90 9690 €¥9°0 8850 L99°0 I0L0 SO90 1990 <CSLO 1180 <TL9O <7890 80LO 9dd04d
I¥9°0  6¥9°0 <7960 6090 890 1€9°0 SL90 1990 7990 SCL'O OLLO 8590 8ELO 6890 08L0 €L90 9590 L8890 9ddDd
06L0 86L0 9650 LE90 LLLO PL90 ¥CLO 6690 LELO €CLO ISLO 6890 6S80 ILLO LT8O 6L90 0690 S690 SOOVIA NNJ [eUON
86L°0 080 €190 I¥90 S8LO L690 9SLO +99°0 +89°0 €890 TOLO L9900 OIS0 8¥L'O LT8O €IL0 L690 90L0 9d40d
68L°0 ¥6L'0 9790 6£90 ¥PLO 8690 TPLO 60L0 89L0 €€L0 8180 SELO LT8O 9€L'0  TT8O TOLO LL9O  €ILO 9dd04
LT80 6180 TC90 TS90 TBLO TILO OLL0 LeLO 6SL0 SILO 6180 CILO +98°0 S6L0 S¥80 6490 LILO LELO SOOVIA INAS
9cL'0 SYL'O0  LI9O0 9¥90 OvL'0 6890 OPLO 6CL0 LLOO SILO 6080 9IL0 €80 €8L0 SO80 92L0 S89°0 <TYLO 9dd40d
LYL'O  8YL'O0  G€9°0 TPO0  €EL0 €890 8VLO 9690 ISLO €¥LO TIBO 8OLO LE€8O SELO  96L0 LOLO €CLO 0£L0 9dd404
8180 66L0 0¢90 8590 <T9L0 +OLO OSLO PILO €vL'0 9¢L0 LT8O €€L0 8¥80 VIS0 €¥80 6890 L8O OVLO SOOVIA 44
6650 1090 8LS0 7T9S0 ¥¥9°0  L8SO 8I90 €LS0 0650 L6S0 6650 9LS0 6090 <90 9790 0190 0090 €650 9d40d
G090 SI90 88S0 T6SO 0S990 <TC90 TC9O0 9190 €090 LT9OO I¥90 +¥I90 0890 €¥90 6€90 9650 L6S0 L6SO 9dd04
9¢9'0  ¥S9°0 1090 9190 TILO 6890 9890 T890 LOLO 1S90 €690 +€9°0 6CL0 9L90 1890 6£90 6¥9°0 6790 SOOVIN NN
9¢L'0  TTLO TE90  €¥90 0€EL0 T8O SELO0 TO90 8890 STLO 0080 SOLO ¥C80 €9L°0 880 €CLO ¥OLO TTLO 9d40d
opL'0  STLO  SP90  SPO0  ¥CL'O0 L8890 TKLO 0CLO  OPLO  6VLO0 0T80 6vL0 6C80 ¥9L0 6180 LTLO STLO  €TLO 9dd404
OIL'0 S89°0 L6SO 8I90 8690 0L9°0 OIL0 <TL9O 8890 €CLO 0LLO SOLO 88L0 ¥9L°0 €080 990 <COLO TELO SOOVIN aNd
81V LIV oIv SIv 1454 eIV v 11V orvy 6V 8V LV v v 14 (A4 (4% v
onyv  sioyduoseg SIS

"UONBPI[BA-SSOIO P[OJOAY © Sulsn sAesse Y [ZXOL Pue Ise)X0], §] 10} S[OPOW [ENPIAIPUI JO UBULION] ¢ d|qel

SPRINGER NATURE



498

H. L. Ciallella et al.

Table 3 External validation of

ER agonists, antagonists, and Algorithms Descriptors - AUC
binders. CERAPP CERAPP in vitro CERAPP EADB in vivo
in vitro agonists antagonists in vitro binders  uterotrophic
BNB MACCS 0.859 0.731 0.684 0.640
FCFP6 0.799 0.815 0.715 0.757
ECFP6 0.780 0.831 0.702 0.686
kNN MACCS 0.796 0.768 0.688 0.729
FCFP6 0.732 0.711 0.622 0.751
ECFP6 0.736 0.786 0.626 0.684
RF MACCS 0.901 0.759 0.713 0.756
FCFP6 0.884 0.747 0.703 0.726
ECFP6 0.906 0.706 0.707 0.747
SVM MACCS 0.887 0.820 0.739 0.770
FCFP6 0.829 0.830 0.667 0.765
ECFP6 0.829 0.849 0.670 0.790
Normal DNN ~ MACCS 0.879 0.860 0.754 0.767
FCFP6 0.794 0.780 0.691 0.802
ECFP6 0.801 0.733 0.681 0.724
Multitask DNN - MACCS 0.866 0.749 0.698 0.720
FCFP6 0.822 0.869 0.672 0.787
ECFP6 0.821 0.751 0.736 0.757
Consensus MACCS 0.889 0.828 0.726 0.766
FCFP6 0.826 0.817 0.704 0.784
ECFP6 0.823 0.831 0.726 0.738

best performance in the external predictions, its prediction
accuracy was similar to the best-performing model in the
four datasets (Table 3).

Discussion

Computational methods offer potential advantages for rapid
early screening of compounds for possible estrogenic and
antiestrogenic effects. In 2015, the US EPA published a
computational model that incorporated concentration-
response data from 18 quantitative HTS assays from the
ToxCast and Tox21 programs [42, 43]. The success of this
model to predict in vivo uterotrophic activity led to
the acceptance of its results as an alternative to rodent
uterotrophic testing [85]. However, this model requires
experimental concentration-response data for evaluating
compounds, and cannot be applied to new compounds that
did not yet undergo testing in these assays. Furthermore, not
all of the included assays are readily available to be applied.
This issue was solved in the current study by developing
machine- and deep-learning models to predict the ER
activity of new compounds directly from chemical struc-
tures. Multitask deep learning outperformed normal deep
learning for the prediction of in vitro activity in almost all
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cases across 18 ToxCast and Tox21 assays. None of the six
algorithms used for modeling could consistently outperform
all others across 18 assays, regardless of the descriptors
used. Consensus modeling is, therefore, still the most sui-
table and robust modeling approach. These advantages are
evident in this study, with consensus models yielding the
highest AUC for 11 of the 18 total assays across all
descriptor—algorithm combinations (61%, Table 2). The
combination of all descriptor—algorithm sets to generate one
consensus prediction instead of selecting an algorithm that
is specific to a descriptor set is still the best strategy for
future model development.

The S4q, San» and Sp parameters used for the prediction
of the in vitro agonist, antagonist, and binding activities of
external validation datasets are also based on the concept of
consensus modeling (Egs. 3-5). Each of these parameters
incorporates predictions using assays that represent between
three and six different biological processes relevant to
the activity of interest. For example, the S, parameter
includes 16 assays related to nuclear ER agonism, which
represent six biological processes: receptor binding, recep-
tor dimerization, DNA binding, RNA transcription, protein
production, and cell proliferation (Table 1). Furthermore,
these assays represent four general types of technology:
radioligand, fluorescence, bioluminescence, and electrical
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Fig. 3 Effect of applicability A
domains on model predictions
Predictivity of individual and

. g 081 0.8
<
consensus QSAR models using 0.6 -“““. 0.6
MACCS descriptors for (a)

1.0

. 0.0 08

cross-validation and (b) external
validation with a chemical
similarity threshold of 0.8, using
FCFP descriptors for (c¢) cross-
validation and (d) external
validation with a chemical

similarity threshold of 0.4, and
using ECFP descriptors for (e)
cross-validation and (f) external
validation with a chemical
similarity threshold of 0.3. All
AUC values are reported as the
mean value + standard deviation.

impedance [42, 43] (Table 1). By incorporating assays that
represent a variety of technologies, the results are more
reliable because technology-specific artifacts will affect
fewer probabilities.

The predictivity of new compounds, especially toxic
compounds, can be explained by revealing their nearest-
neighbor compounds. For example, 6a-hydroxyestradiol
(CAS 1229-24-9) was classified as a binder and a strong
agonist in the CERAPP dataset [63]. This compound is
an estrogenic product from the liver metabolism of the
prominent endogenous estrogen estradiol (E,) [86]. 6a-
hydroxyestradiol showed both the highest Sp score (Sp =
0.882) and the highest S4¢ score (S4, = 0.879) among
all new compounds using the consensus models. 6a-
hydroxyestradiol was predicted to be active in all binding-
related assays (A1-All) and all agonism-specific assays
(A12-A16). Its nearest neighbor in the training set was
alfatradiol (CAS 57-91-0), a stereoisomer of E, that behaves
as a nuclear ER agonist in both in vitro [63] and in vivo [65]
assays. Alfatradiol also showed active responses in all
binding and agonist assays used to train the models in this
study. Among the EADB in vivo uterotrophic agonists,
mestilbol (CAS 18839-90-2) showed the highest S, score
(Sag = 0.870). Mestilbol is a synthetic monomethyl ether
derivative of diethylstilbestrol (CAS 56-53-1), which is its
nearest neighbor in the training set. Diethylstilbestrol (DES)
is a well-known synthetic nonsteroidal estrogen that was
previously prescribed to pregnant women to prevent mis-
carriages [87]. DES is a known strong agonist of the ER that
showed uterotrophic activity in several independent
guideline-like studies [65]. Another external compound,
pipendoxifene (CAS 198480-55-6), was classified as an ER
antagonist in the CERAPP dataset [52] and was predicted
correctly. Pipendoxifene is an investigational drug currently

Algorithm @)

Validation Set

undergoing clinical trials as a selective ER modulator
(SERM) [88]. Pipendoxifene is under development to treat
ER-positive breast cancers as well as osteoporosis [89].
Pipendoxifene showed mixed (either active or inactive)
results in binding assay model predictions, but was pre-
dicted as an antagonist in the specific assays (Al7 and
A18). Among these assays, this compound’s two nearest
neighbors were raloxifene hydrochloride (CAS 82640-04-8)
and bazedoxifene acetate (CAS 198481-33-3), which are
FDA-approved SERMs for the treatment of osteoporosis
[89, 90]. Clinical trials of these compounds indicated ER
antagonist activity in breast and uterine tissue [89, 90].
The predictive accuracy of this study can be improved by
implementing applicability domains. The QSAR models
were based on chemical structures, and therefore are most
reliable when predicting new compounds that are chemi-
cally and structurally similar to compounds in the training
dataset. A common method to implement a QSAR model
applicability domain is only to predict compounds that are
within a certain similarity threshold with their nearest
neighbor in the training set [91, 92]. Figure 3 shows the
effect of only predicting compounds within a Jaccard
similarity of 0.8, 0.4, or 0.3 using models with MACCS,
FCFP, or ECFP descriptors, respectively, on the fivefold
cross-validation and external validation results. For external
validation, new compounds were predicted if the Sag, San,
and Sp parameters can be calculated with at least half of
their constituent assay models (Eqgs. 3-5). Using these
thresholds allows for 42-83% coverage of the external
predictions. Implementing these applicability domains
enhanced the cross-validation performance of all the
algorithms, including consensus predictions, for 18 ER
assays (Fig. 3a, c, e). The average AUC value for each
algorithm improved from 0.600-0.759 to 0.617-0.800
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using the applicability domains (i.e., Jaccard similarity 0.8
for MACCS, 0.3 for ECFP, and 0.4 for FCFP descriptors).
The use of the applicability domains also enhanced most
external predictions (Fig. 3b, d, f). For CERAPP com-
pounds, the AUC values improved from 0.622-0.906 to
0.696-0.923 using the applicability domain. However, for
the EADB compounds, implementing the applicability
domain did not improve the results significantly (Fig. 3b,
d, f). Although the Sag, Sun, and Sp parameters as cur-
rently calculated show good predictivity (Table 3), uti-
lizing applicability domains and reducing the weight of
binding assays in the calculations is expected to enhance
the results further. Defining the applicability domain is
also one of the principles for validation of QSAR use for
regulatory purposes, and thus is a prudent consideration if
the ultimate purpose of the QSAR model is to make a
regulatory decision [93].

In this study, 7576 compounds that were tested in Tox-
Cast and Tox21 assays related to nuclear ER agonism,
antagonism, and binding were used for exhaustive modeling
using classic machine learning, normal deep learning, and
multitask deep-learning approaches. To this end, 273 indi-
vidual QSAR models were developed for 18 assay datasets
related to nuclear ER activity. QSAR models developed
using multitask deep learning outperformed models devel-
oped with normal deep learning (i.e., trained for a single
endpoint) in almost all endpoints. However, no individual
algorithm could consistently outperform all others across
the 18 endpoints. The consensus models generated by
averaging the predictions of the individual models had
similar or higher predictivity than the individual models.
Three parameters were defined to incorporate predictions
from models that represent mechanistically relevant assays
to predict a compound’s likelihood of behaving like a
nuclear ER agonist, antagonist, or binder. External valida-
tion based on these parameters showed reliable predictivity
for new compounds that did not undergo experimental
testing in 18 assays. The results of this study demonstrate
the advantages of multitask deep learning for the QSAR
modeling of mechanistically related assay endpoints. Fur-
thermore, consensus modeling remains the most reliable
strategy for QSAR modeling in the current big-data era, as
no algorithm or chemical descriptor set is universally better
than others are.
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