
Laboratory Investigation (2019) 99:1515–1526
https://doi.org/10.1038/s41374-019-0272-3

ARTICLE

Microvascularity detection and quantification in glioma: a novel
deep-learning-based framework

Xieli Li1,2 ● Qisheng Tang3
● Jinhua Yu1,2,4

● Yuanyuan Wang1,2,4
● Zhifeng Shi3

Received: 17 December 2018 / Revised: 25 March 2019 / Accepted: 18 April 2019 / Published online: 14 June 2019
© The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2019

Abstract
Microvascularity is highly correlated with the grading and subtyping of gliomas, making this one of its most important
histological features. Accurate quantitative analysis of microvessels is helpful for the development of a targeted therapy for
antiangiogenesis. The deep-learning algorithm is by far the most effective segmentation and detection model and enables
location and recognition of complex microvascular networks in large images obtained from hematoxylin and eosin (H&E)
stained specimens. We proposed an automated deep-learning-based method to detect and quantify the microvascularity in
glioma and applied it to comprehensive clinical analyses. A total of 350 glioma patients were enrolled in our study, for
which digitalized imaging of H&E stained slides were reviewed, molecular diagnosis was performed and follow-up was
investigated. The microvascular features were compared according to their histologic types, molecular types, and patients’
prognosis. The results show that the proposed method can quantify microvascular characteristics automatically and
effectively. Significant increases of microvascular density and microvascular area were observed in glioblastomas (95% p <
0.001 in density, 170% p < 0.001 in area) in comparison with other histologic types; increases were also observed in cases
with TERT-mut only (68% p < 0.001 in density, 54% p < 0.001 in area) compared with other molecular types. Survival
analysis showed that microvascular features can be used to cluster cases into two groups with different survival periods
(hazard ratio [HR] 2.843, log-rank <0.001), which indicates the quantified microvascular features may potentially be
alternative signatures for revealing patients’ prognosis. This deep-learning-based method may be a useful tool in routine
clinical practice for precise diagnosis and antiangiogenic treatment.

Introduction

Cerebral glioma is the most common malignant brain tumor
in the central nervous system according to the Central Brain
Tumor Registry of the United States (CBTRUS) [1]. In
accordance with the latest World Health Organization
(WHO) classification of brain tumors [2], well-established
molecular parameters are incorporated into the diagnosis of
diffuse gliomas. At present, the diagnosis of diffuse gliomas
is not only based on histology but also on molecular diag-
nosis. For molecular diagnosis, isocitrate dehydrogenase
(IDH) mutation status, codeletion of 1p and 19q, and
mutations of the telomerase reverse transcriptase (TERT)
promoter are three major biomarkers with significance
[3, 4]. By using these three biomarkers, gliomas can be
stratified into the following four molecular subtypes that
contribute to accurate outcome prognostication: IDH-mut/
1p/19q codeletion (i.e., triple positive, the subgroup of IDH-
mut/1p/19q codeletion is expected to be triple positive
because oligodendrogliomas are virtually always positive
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for TERT promoter mutation.), IDH-mut only, TERT-mut
only and triple negative. Among these subgroups, IDH-mut
only, IDH-mut/1p/19q codeletion, and TERT-mut only are
the most commonly seen, and they are highly correlated
with histological astrocytoma, oligodendroglioma, and
glioblastoma multiforme (GBM), respectively [5].

Microvascularization is of great significance in glioma
development and malignant transformation, as well as being
crucial for evaluating the effectiveness of antiangiogenic
treatment. Since Brem et al. [6] proposed the idea of the
neoplastic microvasculature quantification in histological
specimens, microvascularity has been studied as a bio-
marker for prognosis prediction and antiangiogenic drug
responsiveness [7–9]. The histopathological diagnosis and
grading of brain tumors have important implications in
designing improved therapeutic strategies. Despite the
development of advanced computer-aided tools, the eva-
luation of histological specimens performed by pathologists
is still the gold standard for the typing and grading of brain
tumors. This process is time-consuming with inter- and
intra-observer variability that cannot be ignored. Inter-
observer variability and erroneous perception of tumor
histology can result in a patient being over- or undertreated
[10]. Therefore, accurate quantitative evaluation of micro-
vasculature is required in the histological analysis of
glioma.

Currently, machine-learning methods, particularly deep-
learning algorithms, have been widely used in digital his-
tological image analysis and have reached the diagnostic
accuracy of humans [11–13]. In 2016, an automated fra-
mework that combines the convolutional neural network
(CNN) with the deformable model was proposed for
nucleus segmentation of brain tumor, pancreatic neu-
roendocrine tumor, and breast cancer. This model was
found to outperform conventional segmentation methods
[14]. A spatially constrained CNN and a softmax CNN were
utilized in detection and classification of nuclei in routine
colon cancer [15]. Subsequently, CNNs with more com-
plicated architecture were proposed for automating the
grading of gliomas [16]. For breast cancers, deep neural
networks were applied in mitosis detection [17] and Goo-
gLeNet was used for detection of cancer metastases [18].
With the development of network research, fully convolu-
tional networks (FCN) have predominated semantic seg-
mentation. U-net was proposed for the segmentation of
neuronal structures in electron microscopic stacks [19].
However, rarely have automated methods been proposed for
the detection and segmentation of microvessels in hema-
toxylin and eosin (H&E) stained histological specimens.
Nearly all of the computer-assisted microvasculature ana-
lyses are based on morphometry by manual segmentation or
simple thresholding of immunohistochemical staining ima-
ges using hot-spot selection strategy [20–22].

In this study, we established an automated computer-
assisted, deep-learning-based approach to thoroughly and
accurately detect and segment microvessels and objectively
quantify the histological microvascular pattern (MVP)
configuration in whole H&E-stained specimens. As micro-
vascularity has been shown as an alternative feature for
differentiating gliomas of different subgroups, we intended
to explore the effectiveness of the proposed approach in
clinical practice by applying it in the microvascularity
analysis of various glioma subtypes. Histological subtypes,
genotypes, and prognosis were included in the correlation
analysis with microvascularity. The workflow of the pro-
posed approach is presented in Fig. 1.

Materials and methods

Case selection

This study enrolled 350 adult patients who were pathologi-
caly diagnosed with glioma between 2012 and 2017 at the
Huashan Hospital of Fudan University. The cases were
divided into two groups. Some of the cases (58 cases)
were used for network training and the others (292 cases)
were used for statistical analysis (Table 1). The tumor spe-
cimens, which were made into H&E-stained slides, were
reviewed and confirmed according to the current WHO 2016
criteria. All of the analyzed samples were from pretreatment
surgeries. These slides were scanned by Aperio ScanScope
XT and saved as whole-slide images (WSIs). The size of
WSIs in the overall dataset varies between 15,755 × 23,570
and 71,047 × 123,746 pixels, with an average value of
63,224 × 74,240. In addition, the results of the molecular
diagnosis for all cases were retrieved from the Huashan
Molecular Database. Genotyping of all the cases were per-
formed according to the system as previous reported: IDH
mutation only, IDH-mut/1p/19q codeletion, TERT mutation
only, and triple negative. We evenly selected the training
cases according to their histological types and molecular
types for the sake of diversity. Five hundered and eighty
patches were extracted from the 58 WSIs and each case
provided ten patches with different microvessels. For nega-
tive samples, 62 patches without microvessels were collected
from the blank background, normal cortex, hemorrhage area,
and the tumor area. Some of the negative samples are similar
to the positive samples. The size of the smallest patch is
204 × 220 pixels, the largest patch is 4594 × 3718 and the
average is 763 × 815 pixels. We quadrupled these patches
with random rotation and color disruption and the final
number of the training samples was 2568 patches. For the test
image, we collected one patch with microvessels, in part or in
whole, from each WSI in the dataset for statistical analysis
which is independent of training cases and also extract 36
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negative patches. In this way, we obtained a test dataset of
328 images, which could ensure the quality of the

segmentation results in the following step Moreover, we
downloaded 35 WSIs from TCGA GBM and LGG database
and extracted 195 images including 30 negative samples as
the second independent test set for validation of robustness.
The details are shown in Table 2. Follow-up information was
available for 179 patients.

Methodology for segmentation and feature
extraction

Fully convolutional network for microvessel segmentation

In the microvessel segmentation task, methods that can
produce semantic segmentation results that are end-to-end
and ultimately pixel-to-pixel are required. FCNs are alter-
native approaches for this task [23]. FCN consists of con-
volutional layers, pooling layers, activating layers, and
deconvolutional layers. By replacing fully connective
operations with convolutional operations, CNNs are able to
predict classifications of several local parts of the input
images rather than one global classification result for each
image. Through deconvolutional operations, the local clas-
sification results will produce coarse output maps that share
the size of the input images. To our knowledge, among the
layers of CNNs, feature maps from shallower layers main-
tain lower level visual features, but more spatial location
features and vice versa. Combining features from shallower
layers with coarse deconvolutional results makes the output

Table 1 Patients’ characteristics

Network
training set,
N (%)

Statistics
analyzing set,
N (%)

TCGA
test seta,
N (%)

No. of patients (WSIs) 58 292 35

Age 50.8 ± 14.5 47.2 ± 15.3 48.8 ± 14.6

Gender

Women 22 (37.9) 139 (47.6) 14 (40.0)

Men 36 (62.1) 153 (52.4) 21 (60.0)

Histology type

Astrocytoma 20 (34.5) 137 (46.9) 10 (28.6)

Oligodendroglioma 17 (29.3) 66 (22.6) 10 (28.6)

Glioblastoma 21 (36.2) 89 (30.5) 15 (42.8)

Molecular type

IDH-mut only 10 (17.2) 82 (28.1) –

IDH-mut/1p19q
codeletion

10 (17.2) 80 (27.4) –

TERT-mut only 10 (17.2) 77 (26.4) –

Triple negative 10 (17.2) 53 (18.1) –

Other 18 (31.2) 0 (0.0) –

Follow-up
investigated

0 (0.0) 179 (61.3) –

aWSIs downloaded from TCGA database are for the segmentation test,
therefore the molecular and prognostic information are not collected

Fig. 1 The workflow of microvascular assessment. The top left part of
the figure is a schematic diagram of the training phase. Images with
annotations are selected from WSIs for segmentation model training.
The rest of the figure is a schematic diagram of the clinical validation

phase. Microvascular patterns in patient’s WSI are assessed by our
method and suggestions about diagnosis, prognosis and anti-
angiogenesis treatment are provided for pathologists
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maps more precise and detailed. Compared to conventional
classification models with a slide window, FCNs split more
finely and cost less time. In this study, we tested various
kinds of networks with fully convolutional structures
including FCN-GoogLeNet [23, 24], FCN-VGG16 [23, 25],
and U-Net [19] (see detailed structure in Fig. S1).

Before the process of training, we collected manually
labeled images and augmented these patches by rotating,
flipping, and adding color imbalance to establish the training
set. Experienced physicians from Huashan Hospital were
invited to label the dataset. Two pathologists segmented the
images independently and checked each other’s results. The
ground truth was determined by averaging two results unless
there was a disagreement between two pathologists. In such
cases, a third expert judged the results and determined the
final label. The segmentation images consist of four cate-
gories: microvessel, red blood cell (RBC), tissue stroma, and
blank background. Each of the above networks was trained
by the stochastic gradient descent algorithm with learning
rate dropping gradually until the loss functions of both
training set and validation set no longer declined. We set the
training upper limit to 200 epochs because all models reach
convergence. After the training, these networks were mod-
ified to produce microvascular regions.

Three different kinds of FCNs with their deformations
were applied in the segmentation task and we used a series
of independent annotated images to validate the perfor-
mance of these models. The pixel accuracy (PA) of the
image, mean pixel accuracy (MPA) of the four classes, the
mean intersection over union (MIU), the frequency weigh-
ted IU (FWIU), and the dice coefficient (DICE) of the
microvessel regions were the five critical properties that
were evaluated.

For optimal reasons, we chose the FCN-GoogLeNet as
the final segmentation model in further experiments (see
Fig. 2).

Recognition of microvessels

We adopted some conventional image processing methods
to refine the segmentation results. First, to maintain the
segmentation integrity, small holes in the microvascular
regions were filled and tiny microvascular patches outside
the main part of the vascular regions were removed. Second,
due to the segmentation results that indicated that one vessel
could be separated into segments, these connected regions
were merged into several microvessels according to relative
size, location, and distance. Regions that share a similar

Table 2 Dataset for microvessel
segmentation

Subtype Training set Testing set TCGA

WSI Histology Astrocytoma 20 137 10

Oligodendroglioma 17 66 10

Glioblastoma 21 89 15

Total 58 292 35

Molecular IDH-mut only 10 82 –

IDH-mut/1p19q codeletion 10 80 –

TERT-mut only 10 77 –

Triple negative 18 53 –

Total 58 292 –

Patch Positive sample 2320 292 165

Negative sample 248 36 30

Total 2568 328 195

Fig. 2 The detailed architecture of the FCN-GoogLeNet. The FCN-
GoogLeNet consists of nineteen layers, including five convolutional
layers, two max pooling layers, nine Inception modules, and three

deconvolutional layers. Each Inception module has multiscale con-
volution filters with different depth, which enable the network to
identify targets of different sizes
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direction and are located close to each other are more likely
to be recognized as one vessel. Moreover, small regions
surrounding a big vessel are more likely to be regarded as
extensions of the vessel. Third, structural information was
taken into consideration during recognition. An annular
structure formed by microvascular regions with a blank hole
or RBC in the center is likely a single microvessel and so are
the structures consisting of linear arranged vascular regions.
Finally, the automatic threshold segmentation method was
applied in the potential microvascular region to find endo-
thelial cells, because the state of each microvessel depends
on these cells. Microvessels with a thick layer of endothelial
cells are considered to exhibit vascular endothelial cell
proliferation, i.e., abnormal vessels.

Feature extraction

Clinically, characteristics such as MVP, microvascular area
(MVA), and microvessel density (MVD) are calculated to
reflect the microvascular state of the glioma [20, 21, 26]. In
this study, we utilized these quantitative indices and added
some new features to present the microvascular character-
istics. The features involved in our study are listed in
Table 3 and the details are provided in Table S1.

Microvascularity analysis

A correlation analysis was performed on all micro-
vascularities to study the consistency and independence
between some features. Then, three distinct scenarios were
involved in the study:

(1) The glioma cases were divided into three histology
subtypes: astrocytoma, oligodendroglioma and glio-
blastoma, and the quantitative microvascular

differences were compared.
(2) The correlation between genotypes and microvascular

property were explored by comparing four molecular
types: IDH-mut only, IDH-mut/1p/19q codeletion,
TERT-mut only and triple negative. This analysis was
repeated in all cases and in low grade cases.

(3) We proposed a framework for microvascularity
assessment in which cases were grouped by clustering
some specific microvascular features. Survival analy-
sis revealed a close relationship between multiple
quantitative features and the survival time of patients,
which indicates that microvascularity could distin-
guish patients with different prognoses as an alter-
native indicator.

Statistic processing

For correlation analysis, the data were neither normalized
nor adjusted for the sake of assessing the accuracy of the
extracted features. A correlation coefficient matrix was used
to visualize the associations.

For the variation analysis, the Bartlett test was used to
assess the homogeneity of variance of the features among
the different types. The differences among groups were
tested for significance by analysis of variance and the sig-
nificance of difference between each two groups was tested
by the student’s t test (T test) if the data satisfied the
homogeneity of variance (på 0.05). Otherwise, (p ≤ 0.05),
the Kruskal–Wallis (KW) test was utilized to test the sig-
nificant differences between groups and the significance of
difference between each two groups was evaluated by the
Wilcoxon rank sum test.

In survival analysis, first we separated the 179 cases by
500 days of survival because many studies show that the
median survival time of GBM is 15–17 months [2]. Since
GBM has the worst prognosis, astrocytomas or oligoden-
drogliomas that tend to be GBM in OS also have a bad
prognosis. Then we calculated the normalized clustering
centers of the two groups (OS < 500 days and OS ≥
500 days). The cut-off values were the mean values of the
two clustering centers. Next, the cohort was regrouped into
high-risk group and low-risk group according to the cut-off
values, with each feature determining a grouping situation.
Finally, we did survival analyses on these grouping
situations.

Overall workflow

As shown in Fig. 1, our workflow consists of model train-
ing, feature extraction, statistical analysis, and validation.
For patient level assessment, the WSI was cropped into non-
overlapping patches of 1792 × 1792. Before segmentation,

Table 3 Microvascular features

Feature category Feature name Feature number

Density (1) Microvascular density 1

Area (2) Microvascular area 1

Size (3) Area of single microvessel 8

(4) Length of single
microvessel

Shape (5) Eccentricity of
microvessel

4

Cluster degree (6) Distance from center 4

Order degree (7) Direction entropy 2

Supply area (8) Area of microvascular
blood supply

1

Hyperplasia degree (9) Ratio of endotheliocytes 4

(10) Ratio of proliferating
microvessels

Microvascularity detection and quantification in glioma: a novel deep-learning-based framework 1519



patches were filtered through a threshold value to ensure the
validity of the contents. After segmentation and post-
processing, microvascularity was quantified, synthesized,
and analyzed. The assessment about the degree of angio-
genesis, the risk group belonging and the other details are
designed to help pathologists to make a diagnosis, predict
prognosis, and design treatment.

Experimental environment

A Dell Precision Tower 7910 workstation with an Intel(R)
Xeon(R) CPU E5-2687W v4 @3.00 GHz processor, 64.0
GB RAM and NVIDIA TITAN Xp GPU is involved in our
experiment. The programming tool was MATLAB R2017a
with the MatCovNet toolkit. The statistical analysis was
processed by R version 3.4.2.

Results

Segmentation and recognition

A total of 328 testing images in our dataset with manually
segmented results were used in the evaluation of the
microvessel segmentation. Before segmentation, these
images were enlarged to the nearest multiple of 32 and so

were the corresponding annotations because they need to be
down sampled five times in FCN models. The segmentation
results and quantitative assessment indicators of the above
five FCN models were compared and are listed in Fig. 3 and
Table 4. Both visual feeling and quantitative indicators
show that the FCN with a GoogLeNet structure out-
performed the others. TCGA test data showed that there was
a slight decrease in all five methods’ performances. Con-
sidering the source of the two test sets and the segmentation
performance, the FCN with a GoogLeNet structure is robust
enough in the further experiment and the decrease is
acceptable. Thus, we then used this FCN network as the
segmentation model.

The postprocessing approaches described in the Methods
section were conducted for microvessel recognition. We
compared the microvascular number of the algorithm with
the ground truth of the 328 testing images. The results of
postprocessing and microvessel counting are shown in
Fig. 4 and Table 5. Our method was able to correctly count
the number of microvessels in most of the images. How-
ever, the absolute error increases as the image complexity
increases. In the WSI level segmentation and recognition,
the scanning window was set to 1792 × 1792. Microvessels
are spaced sparsely among most of the WSI and the
appropriate segmentation window limits the image com-
plexity, thus the method precisely identified the vascularity.

Fig. 3 Segmentation results of
five FCN model. Six typical
images are arranged in rows
with the first three rows from our
independent testing set and the
last three rows from TCGA
database. Columns from left to
right are the original image, the
segmentation ground truth, the
result of FCN-GoogLeNet, the
result of FCN-VGG with 8 times
upsampling, the result of FCN-
VGG with directly 32 times
upsampling, the result of U-Net
with 4 downsampling layers and
the result of U-Net with 5
downsampling layers
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At the WSI level, a positive sample is defined as the area of
microvessel while the negative sample is defined as the area
of the other three categories. The false positive rate is 5.06%
and the false negative rate is 22.40% at WSI level. Even
though the false negative rate is slightly high, as long as the
majority of the microvessel is identified, morphological
features are valid and the model works well in the
workflow.

Correlations between microvascular features

A correlation matrix (Fig. 5) shows the relationships
between various microvascular features. The density, the
cluster degree, the area, the number of nuclei, the size, and
the length of the microvessels are highly correlated with

each other (r= 0.31–0.99). This indicates that cases with a
higher degree of angiogenesis are not only richer in the
number of microvessels but also bigger in size. The area of
nuclei is related to the proportion of proliferating vessels
(r= 0.93), indicating that the phenomenon of angiogenesis
is accompanied by endothelial cell proliferation. Moreover,
a relationship (r= 0.3) exists between the shape and supply
area, which means that a long strip of blood vessels can
supply a larger area of tissue than a cluster of blood vessels.
The strong negative correlation coefficient between order
and supply area is caused by the direction of entropy. A low
value of entropy relates to the regular arrangement of ves-
sels and large supply area. These findings partly validate the
effectiveness of our model in microvascular assessment.

Validation of distinct histopathology subtypes

Histopathology subtyping information of the glioma is uti-
lized to validate the effectiveness of the extracted vascu-
larity. The microvascular features of three pathological
subtypes, astrocytoma, oligodendroglioma, and glio-
blastoma, were compared and are shown in Figs. 6, S2 and
Table S2. Significant differences appeared in the compar-
ison of vascular density, area, length, shape, distance, and
other properties. Our findings are highly consistent with the
pathological fact that glioblastoma is the most malignant

Table 4 Segmentation
performance of five FCN models
on two independent testing sets

Network PA MPA MIU FWIU DICE

Ours TCGA Ours TCGA Ours TCGA Ours TCGA Ours TCGA

FCN-GoogLeNet 0.957 0.892 0.549 0.554 0.486 0.476 0.814 0.798 0.954 0.905

FCN-VGG-8s 0.853 0.801 0.540 0.505 0.374 0.390 0.689 0.729 0.830 0.843

FCN-VGG-32s 0.896 0.775 0.439 0.452 0.337 0.336 0.651 0.681 0.859 0.837

U-net4 0.849 0.801 0.465 0.440 0.352 0.348 0.667 0.732 0.826 0.845

U-net5 0.603 0.574 0.390 0.331 0.261 0.262 0.563 0.520 0.583 0.578

Fig. 4 Recognition results of the
proposed method. Six typical
images are arranged in column.
Rows from top to bottom are the
original image, the initial result
of FCN-GoogLeNet, the
recognition result of
microvessel, the detected
endothelia cells, the true number
of microvessels and the
prediction number of
microvessels

Table 5 Performance of microvessel counting

Criteria Value

Ground truth (mean ± sd) 0.87879 ± 1.03741

Prediction (mean ± sd) 0.90909 ± 0.93302

Absolute error (mean ± sd) 0.33333 ± 0.63564

Relative error (mean ± sd) 0.18687 ± 0.41995

Accuracy (%) 75.8

Ratio of absolute error ≤ 1 (%) 90.9

Microvascularity detection and quantification in glioma: a novel deep-learning-based framework 1521



glioma with microvascular proliferation [2]. It is clear to see
that the level of most properties in glioblastoma, particularly
MVD and %MVA, is higher than in astrocytoma (95% and
170% higher, respectively) and oligodendroglioma (81%
and 113% higher, respectively). In the category of lower
grade gliomas, the vascular property of astrocytoma can be
hard to distinguish from oligodendroglioma, except for the
larger size of microvessels (11% larger) and greater number
of endothelial cells (13% more) in oligodendroglioma.

The outliers in Fig. 6 are shown to be GBM cases with
hyperactive angiogenesis and astrocytoma cases with
interfering extraneous normal tissues. These results indicate
that our method can precisely extract the features of
microvessels.

Validation of distinct genotypes

In regard to genotype correlation, we observed that part of
the microvascular properties was significantly different
among the cases. TERT-mut only and triple negative types
have more diffuse microvessels (D), more microvascularity
and a larger area (MVD and %MVA) than the other two
types (~9%, 68%, and 54%, respectively), and the high
levels are significant (p < 0.05), which shows their malig-
nancies. In contrast, the blood supply area (Sup) is sig-
nificantly higher in IDH-mut only and IDH-mut/1p/19q
codeletion than the other two (38%). In addition, only
TERT-mut only is significantly different from the other
three in terms of E, Ent, R, and N. A lower value of E
means that the vessels are closer to a circle or ring shape;
higher Ent correlates to a more chaotic vascular arrange-
ment, and a higher R and N refer to the higher proliferating
degree of TERT-mut only. Moreover, the triple negative
type has the smallest size of vessel (A, L), which means
angiogenesis is common in this genotype. The results are
shown in Figs. 7, S3, and Table S3. The outliers in Fig. 7
are the same cases seen in Fig. 6.

Even in lower grade gliomas, there are significantly more
microvessels in the TERT-mut only and triple negative
types than the other types (51% higher in %MVA, 64%
higher in MVD). Although TERT-mut only has the most
abundant endothelial cells and triple negative has the
smallest area, the four genotypes are nearly the same in
terms of proliferation degree and the size of vessels, which
is an unusual phenomenon in lower grade gliomas. The
differences of genotype are shown in Figs. 8, S4, and
Table S4.

Fig. 5 Correlation matrix of the representative microvascular features.
Shape: average eccentricity of microvessels (Eavg); Supply: average
area of microvascular blood supply (Sup); Density: microvascular
density (MVD); Cluster: average cluster degree (Davg

−1); Area: per-
centage of microvascular area (%MVA); Nuclei: average number of
nuclei in one vessel (Ne); Size: average area of one vessel (Aavg);
Length: average length of one vessel (Lavg); Order: entropy of the
vascular orientation (Ent1); Nuclei rate: area ratio of endothelia cells to
vessels (Re); Proliferating: proportion of proliferating vessels (Rp). The
upper part uses color to visualize the relationship and the lower part
shows the coefficient. Features with high correlations are clustered into
one black rectangle

Fig. 6 Comparison of the vascularity between pathological subtypes.
a The probability distribution map of microvascular density. b The
scatter diagram of the average eccentricity and the average distance
from cluster center of microvessels (the principal components of each
subgroup are circled by an ellipse of the corresponding color). c The

jitter graph of the average area of microvessel (the mean value is given
by the black line). d The jitter graph of the average number of
endothelial cell per microvessel (the mean value is given by the black
line). P values obtained by significance analysis are given in the graph
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Validation of prognosis

All cases with prognostic information were clustered into
two groups by 500 days of survival because studies show
that the median survival time of GBM is 15–17 months.
According to the cut-off values, the cohort was regrouped
into high-risk and low-risk group (cases with feature close
to the long-term patients are classified as low risk and vice
versa), with each feature determining a grouping situation.
Survival analyses were conducted on these grouping situa-
tions and the results showed a significant difference
between groups clustered by %MVA (hazard ratio [HR],
2.843, log-rank= 0.00087, cut-off= 0.7225) (Fig. 9). The
other microvascularities (A, D, E, Sup, L) can also reflect
the different survival risks between groups (Fig. S5).

Discussion

Angiogenesis relates to the degree of malignancy of a
tumor. The microvascular spatial pattern could be regarded
as a biomarker to predict patient prognosis. Currently, the

quantitative analysis of angiogenesis is considered as a
critical indicator to assess whether antiangiogenesis targeted
therapy is effective or not.

The conventional approaches for qualitative or quanti-
tative microvascular assessment are mainly based on che-
mical, biological, and manual methods. The most typical
method of microvascular assessment consists of qualitative
and quantitative measurement of vascular endothelial
growth factor (VEGF) gene expression. Immunohis-
tochemistry technology and RT-PCR are two popular
approaches for analyzing gene expression. However, the
immunohistochemical result has strong subjectivity and is
therefore not accurate. PCR has high accuracy, but the
operation is complex and the cost is high. Moreover, the
qualitative and quantitative result of PCR is strongly
affected by the test sample, and the accuracy is reduced
when the sample is not pure. Thus, machine-learning-based
image processing of H&E specimens will be a more
objective and accurate method for the qualitative and
quantitative assessment of angiogenesis.

As the degree of malignancy increases, the density of
microvessels rises, which is supported by a considerable

Fig. 7 Comparison of the vascularity between genotypes. a The
probability distribution map of microvascular density. b The scatter
diagram of the average eccentricity and the average distance from
cluster center of microvessels (the principal components of each
subgroup are circled by an ellipse of the corresponding color). c The

jitter graph of the average area of microvessel (the mean value is given
by the black line). d The jitter graph of the average number of
endothelial cell per microvessel (the mean value is given by the black
line). P values obtained by significance analysis are given in the graph

Fig. 8 Comparison of the vascularity in lower grade tumors. a The
probability distribution map of microvascular density. b The scatter
diagram of the average eccentricity and the average distance from
cluster center of microvessels (the principal components of each
subgroup are circled by an ellipse of the corresponding color). c The

jitter graph of the average area of microvessel (the mean value is given
by the black line). d The jitter graph of the average number of
endothelial cell per microvessel (the mean value is given by the black
line). P values obtained by significance analysis are given in the graph
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amount of molecular biology research. Variation analysis
shows that microvessels in GBM are superior in terms of
both quantity and area than those in astrocytoma and oli-
godendroglioma, which is in accordance with the classifi-
cation standard of GBM from the WHO 2016 guidelines.
Our results are consistent with previous conclusions, and
the results further confirm the effectiveness of the proposed
method for assisting pathologists to make more accurate
diagnoses.

Since 2016, the diagnosis of glioma has entered the
molecular age. Molecular diagnosis is more accurate in the
prediction of glioma malignancy and the assessment of
prognosis. Hai Yan et al. grouped glioma into several
molecular types via the status of IDH/TERT/1p19q. IDH-
mut only tends to develop astrocytoma, TERT-mut only
tends to become GBM and IDH-mut/1p/19q codeletion
tends to be oligodendroglioma. We examined the micro-
vascularity of the four molecular subtypes (i.e., IDH-mut
only, TERT-mut only, IDH-mut/1p/19q codeletion and tri-
ple Negative). Microvascular hyperplasia is commonly
discovered in higher grade gliomas and could be regarded
as a pathological indicator for malignancy [22]. In the
comparison of all glioma cases, the microvascularization of
TERT-mut only was more significant than the others, fol-
lowed by the triple negative. Statistically, our findings are
supported by the clinical data that the majority of TERT-
mut only are pathologically classified as GBM [27, 28]. The
diagnostic criteria for GBM, particularly gliomas with
higher grade and malignancy, are the proliferation of
abnormal microvessels. On the other hand, cases of TERT-
mutation only often develop into glioblastoma. So there is a
potential biological relationship between GBM diagnosis
and microvascular assessment. In addition, triple negative

consists of quite a few GBM cases. The large number of
GBM cases contributes to microvascularization to a certain
extent and partly explains the high degree of angiogenesis
in these two subtypes. The molecular information indicates
that the proposed method is feasible and accurate.

Antiangiogenic therapy, such as VEGF inhibitors (e.g.,
bevacizumab), is an important method of cancer treatment.
However, this treatment is ineffective in many cases.
According to the subtyping method of The Caner Genome
Atlas (TCGA), gliomas can be classified as Mesenchymal,
Proneural, Neural, and Classical type [29]. Clinical
research indicates that VEGF inhibitors have a curative
effect on mesenchymal gliomas but only in the short term,
through prolonging progression-free survival but not
overall survival [30]. Gliomas with TERT-mut only are
common in the Mesenchymal type where the differentia-
tion degree of tumor cells is low and the malignancy of the
tumor is high. As the microvascularization of TERT-mut
only shows in our study, in the comparison between lower
grade gliomas (i.e., astrocytoma and oligodendroglioma),
TERT-mut only and triple negative types show a high level
of microvascular quantity and area, an equal degree of
proliferation and an even slightly smaller area of single
vessels. Microcosmic variation exists only in the quantity
of cells instead of the cellular morphology, which causes
the growth of the neo-vessels, formation of the vessel
networks, and the unchanged size of single vessels. This
phenomenon could explain why molecular targeted therapy
is effectively toxic to a number of tumor cells in the early
stage, but the effect is not obvious with drug resistance in
the late stage. Therefore, our proposed method could pro-
vide information on whether the patient can be given
antiangiogenic treatment.

Survival Curve Clustered by MVD Survival Curve Clustered by %MVA

5227.0=ffo-tuC091.2=ffo-tuC

Fig. 9 Kaplan–Meier plots show the OS for patients with prognostic information, stratified to low- or high-risk group according to results of MVD
clustering (left) and %MVA clustering (right). The hazard ratio, the original cut-off value, and significance are given in the graph
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As a measure of recovery and prognosis, the OS directly
indicates the malignancy of the glioma. Cases with a high
degree of angiogenesis tend to have a high risk of death and
a short period of survival, which was confirmed by histol-
ogy and molecular typing. Our microvascular analysis also
supports this point. The microvascular features extracted by
our model are effectively able to distinguish high- or low-
risk patients. Therefore, our method can distinguish patients
with a high-risk of death due to a high degree of angio-
genesis who may be benefited from antiangiogenic treat-
ment. Thus, the proposed model has considerable potential
for clinical application.

The potential advantage of our method is to help
pathologists to make histological diagnosis more accurate,
reduce subjective bias, and make diagnosis faster. In addi-
tion, it can assist physicians to make a more accurate
judgment of prognosis, so as to guide whether to adopt
more aggressive chemoradiotherapy or targeted treatment.

Although the proposed model can qualitatively and
quantitatively assess the microvascularity in histological
specimens of gliomas, limitations do exist in our study. (1)
The property of microvascular pattern is shown to be a
prognostic indicator, but we did not conduct more com-
prehensive analysis. By combining other prognostic sig-
natures with statistical significance in multivariate analysis,
gliomas can be further classified into groups with more
distinct survival times, which will be more meaningful. (2)
The accuracy of microvessel recognition has a big margin
of improvement due to the segmentation error and the over
counting, especially in larger pathological images with
complex content. The microvascular assessment results can
also be biased by the unrelated tissue specimen such as
large areas of normal cortex or dissociative vessels. Both
the accurate location of the region of interest and the
improvement of recognition algorithm are the focus of our
study in the next step. (3) Treatment based on the grading of
microangiogenesis is a potential therapeutic strategy for
glioma, but has not been studied due to the small number of
antiangiogenesis treatment cases. We will collect more
information from patients who receive antiangiogenesis
treatment and validate the feasibility of our method via
targeted research in the future.
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