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Abstract
In multiple neurodegenerative diseases, including Alzheimer’s disease (AD), a prominent pathological feature is the aberrant
aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these
disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal
dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a
causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau
mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to
neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause
disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms
by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how
tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-
like propagation in various model systems raise questions about the generalizability of this mechanism in various
tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration
has important implications for tau-targeting therapeutics.

Introduction

The microtubule (MT)-associated protein tau (MAPT) is an
intrinsically disordered protein expressed at its highest
levels in neurons throughout the central nervous system.
Higher molecular mass isoforms generated through alter-
native splicing, often termed “big tau,” are expressed pri-
marily in the peripheral nervous system, but are sometimes
also observed in the spinal cord and skeletal muscle, when
exon 4a and exon 6 are translated, respectively [1–3]. One
of tau’s primary functions is to bind to and promote the
assembly and stability of MTs; this binding activity can
be negatively regulated by phosphorylation at select sites
[1, 4].

Tauopathies refer to a wide range of phenotypically
diverse diseases characterized by the aberrant aggregation
of tau in neurons and/or glia, including Alzheimer’s disease
(AD), progressive supranuclear palsy (PSP), corticobasal

degeneration (CBD), Pick’s disease (PiD), chronic trau-
matic encephalopathy (CTE), and frontotemporal dementia
with parkinsonism linked to chromosome 17 (FTDP-17)
[5]. First discovered as a MT-associated protein in 1975 [6],
tau was later found to be the principal component of neu-
rofibrillary tangles (NFTs), which are hyperphosphorylated
proteinaceous inclusions found in AD and other tauopathies
[7].

In 1998, autosomal dominant mutations in the MAPT
gene that encodes tau were found to cause some forms of
FTDP-17 [8–10], now referred to as FTDP-17t, proving that
tau dysfunction is sufficient for widespread central nervous
system neurodegeneration. Disease pathology for indivi-
duals with FTDP-17t is characterized by the presence of
filamentous tau inclusions throughout the frontal and tem-
poral lobes in neurons and sometimes in glia, accompanied
by atrophy in these regions, as well as ventricular dilation
[11]. These MAPT mutations can cause variable cognitive,
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behavioral, and motor deficits, with an average age of onset
of 49 years and a duration of disease of 8.5 years [12].

As of 2018, over 50 different pathogenic MAPT mis-
sense, silent, and intronic mutations have been reported
(Figs. 1 and 2, Table 1) [11]. Because many of these
mutations present neuropathologically in a manner con-
sistent with different sporadic tauopathies such as PSP,
CBD, and PiD [13–15], there have recently been calls to
characterize tauopathy caused by certain mutations as
familial versions of these specific diseases [16]. Addition-
ally, some of these mutations have been found to be risk
modifiers in certain tauopathies, for instance, A152T in AD
[17]. In addition to the phenotypic and neuropathological
variability between these mutations, there are also a number
of mechanisms by which these mutations are thought to
cause disease. Loss of function, including MT binding and
assembly, changes in alternative splicing, shifts in protein-
aggregation kinetics, and, more recently, prion-like “seed-
ing,” have all been implicated. Thus, this review focuses on
the potential biochemical and cellular mechanisms in which
different tau mutants might cause disease—with an
emphasis on their ability to aggregate with seeding—and
the implications this might have on the study of sporadic
tauopathy.

Tau expression and splicing

The MAPT gene, located on chromosome 17, comprises 16
exons, numbered 0–14 [5]. Exon 1 contains both 5’
untranslated region as well as the start codon of the protein,

while exon 14 contains untranslated 3’ region. Splicing
variants that include exon 4a are primarily present in the

Fig. 1 The longest tau isoform found in human brain, with its corre-
sponding mRNA and known pathogenic missense and deletion
mutations. The MAPT mRNA resulting in 2N4R tau is shown with an
embedded number corresponding to the originating exon. Exon 1
contains both untranslated 5’ region and the start of the protein. Exons
2 and 3 are present in this isoform as N1 and N2 inserts; however, in
the 1N and 0N isoforms of tau, exon 2 or neither exon 2 or 3 is
translated, respectively. MT-binding repeat 2, or R2, is present in this
isoform; however, in 3R tau, exon 10 is alternatively spliced, and this

region is not present in the protein. The different colors serve to
highlight the regions of the protein that are alternatively spliced as well
as the MT-binding domain. The N- terminal, proline-rich, MT-binding,
and C-terminal regions are indicated above. Below the protein, known
pathogenic missense mutations are indicated. Many of these mutations
reside in the MT-binding region, and as such the specific amino-acid
sequence of this area is shown. The PHF6* and PHF6 motifs, which
are important for tau aggregation, are also indicated. MT, microtubule

Fig. 2 Schematic of the RNA stem loop present at the end of exon 10
and the beginning of intron 10. Known pathogenic exonic (both
missense and silent) and intronic mutations with their corresponding
amino-acid changes or deletions, when applicable, are shown. The
boundary between exon 10 and intron 10 is indicated by the partition
at the top left and also by the use of lower case letters for intron 10.
Mutations in this region that have been shown to increase exon 10
inclusion are indicated in red, while those that have been shown to
decrease exon 10 inclusion are indicated in green. Mutations that have
not been shown to affect splicing are represented in black
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Table 1 Summary of the reported effects of mutations within the MAPT-coding regions on in vitro tau amyloid aggregation, tau’s ability to
promote MT assembly, tau MT binding, altered exon 10 splicing, and the major tau isoforms present as aggregates in human brains

Mutation Genomic
region

Tau
aggregation

MT
assembly

MT
binding

Exon 10
inclusion

Major aggregated tau isoforms References

R5H Exon 1 ↑ ↓ ND ↔ 1N/3R, 0N/4R, 1N/4R [126]

R5L Exon 1 ↑ ↓* ND ND 1N/3R, 0N/4R, 1N/4R (cortical
region); 0N/4R, 1N/4R
(subcortical region)

[13, 112, 127]

G55R Exon 2 ND ↑ (4R only) ND ND ND [128]

A152T Exon 7 ↔ ↓ ↓ ↔ Variable [17, 129, 130]

K257T Exon 9 ↑ (3R)* ↓ ND ND All six isoforms or increased
3R

[15, 131, 132]

I260V Exon 9 ↑ (4R) ↓(4R) ND ↔ 0N/4R, 1N/4R, 2N/4R [131]

L266V Exon 9 ↑ (3R) ↓ ND ↔ 0N/3R, 0N/4R, 1N/4R, 2N/4R [133, 134]

G272V Exon 9 ↑ ↓* ↔ ND 0N/3R, 1N/3R, 2N/3R [112, 135, 136]

N279K Exon 10 ↑ ↔ ↔* ↑ 0N/4R, 1N/4R [84, 135, 137–139]

Δ280K Exon 10 ↑ ↓ ↓ ↓ 0N/3R, 1N/3R [79, 84, 135, 140–
142]

S285R Exon 10 ND ND ND ↑ ND [80]

Δ296N Exon 10 ↔ ↓* ND ↑* ND [112, 143, 144]

N296H Exon 10 ↔ ↓ ND ↑ 4R isoforms [143, 144]

K298E Exon 10 ND ↓ ND ↑ ND [145]

P301L Exon 10 ↑ ↓ ↓ ↔ 4R isoforms [8, 84, 112, 135,
139, 146–148]

P301S Exon 10 ↑ ↓ ↔ ND 4R isoforms [140, 145, 149–
151]

P301T Exon 10 ND ND ND ND ND [152]

G303V Exon 10 ↑ ↓ ND ↑ 4R isoforms [112, 153]

S305I Exon 10 ND ND ND ↑ 0N/4R, 1N/4R [154]

S305N Exon 10 ND ↔ ↔ ↑ ND [137, 155]

L315R Exon 11 ↔* ↓* ND ND 1N/3R, 2N/3R, 0N/4R, 1N/4R,
2R/4R

[112, 156]

K317M Exon 11 ND ND ND ND ND [157]

K317N Exon 11 ↓(3R) ↑(4R) ↓ ND ND 4R tau isoforms [158]

S320F Exon 11 ↑ ↓ ND ND 1N/3R, 2N/3R, 0N/4R, 1N/4R [112, 116]

P332S Exon 11 ND ND ↔ ND All six isoforms [149, 159]

G335S Exon 11 ↔ ↓ ND ND ND [160]

G335V Exon 11 ↑ ↓ ND ND ND [160, 161]

Q336H Exon 11 ↑(3R greater) ↑ ND ND 1N/3R, 2N/3R [83]

Q336R Exon 11 ↑(3R greater) ↑ ND ND ND [82, 83]

V337M Exon 12 ↑* ↓* ↓ ND All six isoforms [112, 146, 148,
162, 163]

E342V Exon 12 ↔ ↑ ND ↑ 0N/3R, 0N/4R, 1N/4R, 2N/4R [112, 150, 164]

S352L Exon 12 ↑ ↓ ↔ ND ND [112, 165]

S356T Exon 12 ND ND ND ND ND [166]

P364S Exon 12 ↑ ↓ ND ND ND [167, 168]

G366R Exon 12 ↔ ↓ ND ND ND [167]

K369I Exon 12 ↓ ↓* ND ND All six isoforms [112, 169]

E372G Exon 13 ↑ ↓ ND ND ND [170]

G389R (G--
> A)

Exon 13 ↑ ↓* ND ↔ 0N/3R, 0N/4R, 1N/3R, 1N/4R [112, 132, 171]
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peripheral nervous system, while variants that include exon
6 can be found specifically in the spinal cord and skeletal
muscle, resulting in a higher molecular mass protein refer-
red to as “big tau” [1–3, 5]. In the human brain, six distinct
isoforms of tau exist based on the alternative splicing of
exons 2, 3, and 10 [18]. Alternative splicing of exons 2 and
3 yields isoforms with 0, 1, or 2 N-terminal repeats (0N, 1N,
2N), while alternative splicing of exon 10 results in tau with
three or four MT-binding repeats in the MT-binding domain
(3R or 4R) (Fig. 1). While 0N3R tau is the predominant
isoform in fetal brain [19], the overall ratio of 3R and 4R
tau isoforms is roughly equal in the adult brain [1, 18, 20],
although this ratio can differ in given regions [21]. 0N and
1N tau isoforms comprise 37 and 54% of the total human
brain tau, respectively, while 2N tau makes up only 9% of
the total tau isoforms [22]. 4R tau isoforms show both
increased affinity for MTs as well as greater levels of MT
assembly in vitro compared to 3R tau isoforms [23, 24].
Although the role of N-terminal inserts is less clear, they
have been implicated in regulating MT stabilization and
plasma membrane interactions [25, 26]. Additionally, co-
immunoprecipitation studies in mice have shown that 0, 1,
and 2N isoforms interact with different proteins pre-
ferentially [27] and that there are regional differences in the
expression of these isoforms in the brain [28].

Alternative RNA splicing of tau is regulated by several
cis elements and trans-acting factors [29]. Exon 10, in
particular, is flanked by an abnormally large intron 9 and
has a weak 5’ and 3’ splice site, which can be acted upon by
these cis elements and trans-acting factors [30]. Addition-
ally, the 3’-end of exon 10 and the 5’-end of intron 10 form
a highly self-complementary stem loop (Fig. 2), which
inhibits the binding of the U1 small nuclear RNA (snRNA)
molecule, part of the small nuclear ribonucleoprotein par-
ticle (snRNP) that functions to bind to the pre-mRNA and
catalyzes the removal of introns [29]. Disruption of this
loop leads to increased binding by the snRNP and higher
levels of exon 10 inclusion [30]. This destabilization can
also be seen in rodents, in which the presence of a guanine
instead of an adenine at position IVS10+ 13 leads to the
predominance of 4R tau [29]. Thus, mutations within

specific cis elements can promote or suppress the inclusion
of this exon, while mutations specifically within the stem
loop tend to promote exon 10 inclusion (Fig. 2).

Two major haplotypes of tau, H1 and H2, are formed
primarily by the 900 kb inversion in the q21 region of
chromosome 17 and a 238 bp deletion in intron 9 in H2 [3].
Furthermore, a number of single-nucleotide polymorphisms
in the H1 haplotype produce several sub-variants, some of
which are associated with an increased risk of certain
tauopathies, such as CBD and PSP [31–33]. Mechan-
istically, it is thought that distinct haplotypes, particularly
H1c, can promote tauopathy through the increased expres-
sion of 4R tau, as is seen in some FTDP-17t mutant tauo-
pathies [34].

Tau structure and aggregation

Four general domains of tau include the N-terminal acidic
projection domain, the proline-rich domain, the MT-binding
domain, and the C-terminal tail (Fig. 1). Although tau is
intrinsically disordered and natively unfolded [35, 36], it
can adopt a “paperclip” like structure, in which the MT-
binding domain and the N terminus approach and interact
with the C terminus [37]. Preclusion of this structure,
through the interaction with other molecules, post-
translational modifications, truncations, or mutations,
could potentiate abnormal aggregation. The MT-binding
repeats also comprise the “paired-helical filament core,” or
PHF core, which serves as the primary structure of aggre-
gated tau filaments [38]. Within this structure are two
hexapeptide motifs, termed PHF6* and PHF6, which are
important for aggregation, and the latter is necessary and
sufficient for β-sheet aggregation in tau [39–41]. Recent
cryo-electron microscopy studies of the PHF core from both
AD and PiD tau filaments further confirm the key areas of
β-sheet forming residues in this core [42, 43]. Overall, the
missense MAPT mutations that disrupt the proposed
“paperclip” structure of tau, or promote and stabilize the
PHF core of tau, are likely to promote aggregation and
inclusion formation.

Table 1 (continued)

Mutation Genomic
region

Tau
aggregation

MT
assembly

MT
binding

Exon 10
inclusion

Major aggregated tau isoforms References

G389R (G--
> C)

Exon 13 ↑ ↓* ND ND 0N/3R, 0N/4R, 1N/3R, 1N/4R [112, 171, 172]

R406W Exon 13 ↔ * ↓ ↓ ND All six isoforms [127, 139, 147,
148]

N410H Exon 13 ↑ ↓ ND ↑ ND [14]

Arrows ↑ and ↓ indicate an increase or decrease compared to WT tau, while↔means no difference. ND indicates no data. An * indicates that studies
have shown differing results; thus, a “↑*” indicates an overall trend towards an increase compared to WT based on the available data.MTmicrotubule

MAPT mutations, tauopathy, and mechanisms of neurodegeneration 915



The process by which tau polymerizes to form amyloid
in vivo is not completely understood. Nevertheless,
“nucleation-elongation” is a potential mechanism that can
contribute to this process in which tau initially forms an
oligomeric nucleus or “seed” before elongating into tau
filaments [44, 45]. As such, the formation of this oligomeric
nucleus is the rate-limiting step, after which tau can elon-
gate rapidly by attaching to the growing ends of the fibril
[45–47]. It has recently been proposed that tau can undergo
liquid–liquid separation to form condensed liquid droplets
within cellular physiological conditions, which could serve
as a precursor for this initial tau β-sheet formation and
aggregation [48]. Experimentally, this rate-limiting step can
be potentially overcome by introducing the pre-formed
“nuclei” of tau that can act as a template for soluble tau to
quickly bind to and polymerize onto, in a process known as
seeding [49]. This mechanism is akin to the misfolding of
prion protein, in which exogenous or intrinsic pathogenic
prion conformers act as templates that induce conforma-
tional changes in the native protein, inducing misfolding,
further aggregation, and neurodegeneration [50]. In a
similar manner, it is thought that certain neurodegenerative
proteinopathies can spread to anatomically connected
regions through template-assisted conformational changes,
in which soluble protein is induced to become pathological.
This concept is further supported based on AD autopsy
series studies, as Braak stages I–VI [51], in which tau
pathology in AD can be defined in a regionally specific and
somewhat predictable manner. Evidence that tau aggrega-
tion can be induced by exogenous tau aggregates and
subsequently spread in this manner—through some com-
binatorial processes of synaptic or exosomal secretion fol-
lowed by endocytotic or exosomal uptake, for example [49,
52]—has been shown in vivo in various types of cell culture
systems and in animal studies (Tables 2–4). Of note, many
of these studies heavily utilize specific mutants that may
serve to enhance or act as a primer for this process
(Tables 2–4).

Tau function and post-translational
modifications

Tau resides mostly in the axons of developed neurons, where
it has a higher affinity for MTs than in the dendrites [53, 54].
Additionally, different isoforms of tau can have distinct
localization patterns, and missorting of tau into dendrites is
an early sign of neurodegeneration in AD [53, 55, 56]. Thus,
altered splicing patterns may contribute to tau mislocaliza-
tion and altered MT stability. Normal tau has roles in reg-
ulating axonal transport [57] and promoting neurite
outgrowth [58]. Knockout mice have further demonstrated
important roles for tau in neurogenesis and neuroplasticity,

with significant impairments to both in the absence of tau
[59, 60]. Tau also binds to and interacts with a number of
other molecules. In particular, the N-terminal domain, which
has a negative charge and projects away from the MTs when
tau is bound [61], can act as a link to membrane compo-
nents, particularly annexin 2 [62]. This region also binds to
the p150 subunit of the dynactin complex, which regulates
the MT motor protein dynein [63].

Given that tau functions to enhance MT assembly and
regulate its stability, which play important roles in neurite
outgrowth, cell stabilization, and intracellular transport,
normal tau activity contributes to maintaining axonal health.
Tau binds to the interface between α- and β-tubulin het-
erodimers specifically with residues interspersed throughout
and around the MT-binding repeats [64]. Thus, tau muta-
tions within these repeats have the ability to disrupt this
interaction, resulting in the destabilization of MTs as well as
a potential increase in unbound, free-floating tau, which
may also promote tau aggregation (Table 1).

Normally, the process by which tau interacts with MTs is
negatively regulated by phosphorylation [4]. There are over
80 potential phosphorylation sites (i.e., serine, threonine,
and tyrosine residues) on the longest isoform of tau, a
number of which are abnormally hyperphosphorylated in
AD and other tauopathies [53]. This hyperphosphorylation
may induce the missorting of tau [65], as well as potentially
promote aggregation, as shown in vitro [66]. Individual
missense mutations in tau can not only alter potential
phosphorylation sites, but also have been shown to promote
phosphorylation compared to WT tau in vitro [67]. Lysine
acetylation has also been shown to be of importance with
regard to tau pathology. Depending on the residue, acet-
ylation can inhibit tau’s degradation and correlate with
tauopathy, or promote its degradation and suppress aggre-
gation [68, 69]. Other post-translational modifications
include glycosylation, isomerization, methylation, ubiquiti-
nation, and truncation [70]. N-glycosylation, isomerization,
and truncation are implicated in the promotion and stabili-
zation of PHFs [71–73], while methylation has been shown
in vitro to suppress aggregation [74].

Altered Tau mRNA splicing in disease

Normally, the ratio of 3R to 4R tau in adult human brain is
approximately equal [1, 18, 20]. In AD, this ratio remains
normal [75]; however, many tauopathies exhibit altered
ratios of tau isoforms, especially within the pathologic
inclusions. For instance, PSP and CBD are considered 4R
tauopathies, while PiD is considered a 3R tauopathy [1].
Interestingly, specific MAPT mutations can cause either
4R or 3R predominant tauopathies as well as tauopathies
with equal isoform ratios [76]. Intronic pathogenic
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mutations largely reside in intron 10 and serve to disrupt
the mRNA stem loop, usually causing an increase in 4R
tau (Fig. 2). For instance, the most common intronic
mutation, IVS10+16 (C to U), serves to increase 4R tau
expression by disrupting this stem loop [11], as do a
number of other intronic mutations in this area (Fig. 2).
Additionally, IVS10+11 (U to C), IVS10+12 (C to U),
IVS10+13 (A to G), IVS10+14 (C to U), and IVS10+16
(C to U) reside on an intronic splicing silencer and all
increase exon 10 inclusion, while IVS10+19 (C to G)
resides on an adjacent intronic splicing modulator and
increases exon 10 splicing [77]. Interestingly, the
IVS10+13 (A to G) mutation is naturally occurring in
rodents, resulting in a preponderance of 4R tau in these
animals [29]. Deletion studies have shown that these two
regions have opposing effects on splicing [29, 30]. Two
missense mutations that affect splicing in opposing ways
are N279K and Δ280K, which are both found around a
polypurine enhancer, which interacts with a number of
different regulatory splicing sequences [77]. While the
Δ280K mutation weakens this enhancer, the N279K
mutation strengthens it, producing dramatically opposing
effects on exon 10 inclusion. The majority of missense
mutations that are found in exon 10 are shown to increase
the levels of 4R tau expression as revealed by mRNA
analysis and/or the protein biochemical profile of patients’
tau isoforms (Table 1). These mutations likely cause
disease either through the direct disruption of the mRNA
stem loop (Fig. 2) or through the disruption of splicing
enhancers and silencers [18, 77]. Furthermore, of the
silent mutations found in tau, only those residing in exon
10 (L284L, N296N, or S305S) or exon 11 (L315L) have
shown to be pathogenic and could also affect splicing by
the disruption of the stem loop (S305S) or by disrupting
or enhancing the splicing cis elements (Fig. 2) [77].

Alterations in the normal ratio of tau isoforms can lead to
a number of adverse results, including impaired axonal
transport [78]. Additionally, for all of the mutations that
affect splicing, insoluble tau levels from affected patients’
brains are predominantly but not exclusively comprised the
isoform that is over represented (Table 1) [79, 80]. Fur-
thermore, because it is proposed that different tau isoforms
harbor distinct MT-binding affinities and potentially bind
unique sites, an overproduction of one isoform over another
might lead to an overabundance of free-floating, unbound
tau, which is primed for aggregation [23, 24, 81].

Altered MT assembly and binding due to tau
mutations

Tau missense mutations can affect MT assembly and
binding, thus reducing MT stability, as well as potentially

leading to increased levels of unbound, free-floating tau in
the cytosol of neurons. In fact, one of most common fea-
tures among missense mutations is their diminished ability,
at least in vitro, to promote MT assembly from tubulin
compared to WT tau (Table 1). Conversely, a few muta-
tions, such as Q336H and Q336R, have a greater ability to
promote MT assembly (Table 1) [82, 83]. Additionally,
some missense mutations, such as S305N, that pre-
dominantly affect splicing demonstrate little effect on MT
polymerization (Table 1) [84]. The impact of tau missense
mutations on its interactions with MTs has also been studied
in vitro by comparing the binding affinity for taxol-
stabilized MTs (Table 1). Although this interaction has
been not been as extensively studied as MT assembly,
typically, these data demonstrate a reduced MT-binding
affinity that is consistent with a reduced ability to induce
MT polymerization (Table 1).

Impacts of tau mutations on aggregation
and seeding

Mutations that alter splicing dynamics and that induce loss
of function with regard to MT interaction both have the
potential to increase the amount of free, unbound forms of
tau in the cytosol that can ultimately potentiate aggregation
and inclusion formation. In vitro, recombinant tau needs a
polyanionic inducer, such as heparin or arachidonic acid, in
order to form tau filaments [85]. In the cytosol, similar
cofactors could promote this aggregation, including RNA
[86, 87]. In addition to specific cofactors, mutations in tau
may help to induce aggregation, making tau more suscep-
tible to template-assisted growth. In vitro, a number of tau
mutants have been shown to increase the rate at which tau
fibrillizes (Table 1).

Some tau mutations can also have marked effects on
seed-induced tau aggregation in vivo. Growing evidence in
cell culture supports prion-like seeding as a possible
mechanism that contributes to pathogenesis (Table 2).
Original studies conducted have shown that the addition of
exogenous pre-formed tau fibrils can induce tau aggregation
in cells expressing WT human tau protein [88, 89]. Other
studies have focused on the seeding and aggregation of
repeat domain (RD) tau, or tau only containing the MT-
binding repeats, as these constructs contain the region
responsible for tau fibrillization and are more prone to
aggregation when seeded or even simply expressed in cul-
ture [44, 90–92]. The majority of cell culture studies,
however, have utilized tau mutants, namely the P301L or
P301S mutants, which robustly aggregate with seeding
compared to WT tau [91–96]. Even when comparing WT
RD tau with RD tau containing a P301L or P301S mutation,
these differences in aggregation remain [90, 92].
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Additionally, the types of tau seeds that were used to
treat these tau-expressing cells were largely divided into
brain lysate from transgenic mice expressing human tau
with a P301L or P301S mutation, human brain lysate from
patients with tauopathy, or recombinant tau protein fibril-
lized in vitro using a polyanionic inducer (Table 2). Com-
parative studies have shown that tau from brain lysates are
more potent at inducing aggregation than recombinant
fibrils; however, recombinant tau that was “seeded” in cell
culture by detergent-insoluble tau from brain lysate can
acquire this potency [94].

Evidence for seeding in vivo has been shown in a
number of mouse models (Tables 3 and 4), beginning with
Clavaguera et al., where pathology was found at the site of
injection with insoluble P301S brain extract in human WT-
overexpressing mice 6 months post-injection, with limited
spread to nearby regions thereafter [97]. Subsequent studies
have mostly utilized mice expressing human mutant P301L
or P301S tau, which have shown significant seeding and
synaptic spread of pathology with a variety of “seeds” uti-
lized (Tables 3 and 4). These mice were treated, largely,
through stereotactic hippocampal injection at 2–3 months,
with brain homogenates from different tauopathies [98],
lysate from aged P301L or P301S tau-expressing mice [99,
100], lysate from cells with stably expressing tau aggregates
[92, 101], or recombinant fibrils, usually the K18 tau
fragment (residues 244–372) [102–106].

Brain lysates from human tauopathy cases or from aged
mutant tau transgenic mice containing tau aggregates appear
to generate the most potent seeds [94]. Further, using
sarkosyl-insoluble lysate or immunoprecipitating tau from
these brains rather than total lysate appears to enhance their
potency [94], while immunodepleting tau greatly dimin-
ishes this potency [100]. This, along with evidence that
“strains” of tau aggregates can survive multiple passages
through both cell culture and mice [101], points to the
importance of conformational templating in this process.
Isoform differences could also contribute to differential
templating; because the P301 residue only exists in 4R tau
and because murine tau is almost exclusively 4R [19, 53],
most studies have only compared seeding of 4R-expressed
tau with 4R aggregates. This differs from the physiological
conditions of AD and PiD, as well as from many instances
of FTDP-17t. In fact, when PiD brain lysates, which pre-
dominately contain 3R tau, were used to seed 4R tau
in vivo, there was significantly less pathology [107]. This
apparent seeding barrier has also been seen in vitro and in
cell culture [89, 108–111], and corroborates the different
proposed structures of tau filaments from AD and PiD
elucidated by cryo-electron microscopy [42, 43].

Differences in the entity of seeds comprising either WT or
mutant tau appear to matter less than the methods used to
generate the seeds (Tables 2–4). For the monomer to be

seeded, however, the data in both cell culture and in vivo
show the importance of whether WT tau or mutant tau is
utilized. Specifically, studies have shown consistent differ-
ences in seeding and aggregation propensities between
P301L, P301S, and P301T mutant and WT tau in vitro, in cell
culture, and in mouse models [90, 92, 94–96, 109, 112, 113].

A recent study from our laboratory investigated 19 dif-
ferent pathogenic tau missense mutations in the context of
an established cellular seeding assay [109]. It was found
that the majority of mutants, including WT tau, failed to
robustly aggregate with seeding, unlike tau with mutations
at the P301 site. This pattern of aggregation with seeding
was similar among the known FTDP-17t mutants P301L,
P301S, and P301T, and even a deletion at the P301 site;
additionally, there was no difference in seeding between the
0N4R or 2N4R isoforms [109]. Because prolines can serve
as inhibitors of β-sheet formation [114], the impact of other
proline residues throughout the MT-binding region was
investigated; it was found again that the inhibitory effect of
P301 on aggregation and seeding was unique, but that re-
introducing a proline at residue 302 was sufficient to inhibit
seeded aggregation [109], demonstrating the importance of
the local molecular environment.

Another unique mutant that affected tau aggregation was
S320F, which was also able to aggregate with seeding in
this assay and even showed some ability to aggregate
without seeding [109]. Other studies have shown that this
mutant is prone to aggregate in vitro and in vivo compared
to WT and other tau mutants [112, 115]. More specifically,
this mutation has conferred greater rates of tau nucleation,
leading to the production of short fibrils [112], which could
explain this mutant's ability to aggregate without the addi-
tion of pre-formed fibrils, since the lag time to create
nucleated “seeds” is shorter than that for other tau mutants.
Mechanistically, this mutation could promote aggregation
in a number of different ways. First, while cryo-electron
microscopy findings of tau from AD PHFs have shown that,
within the amyloidogenic fold, the S320 residue could
reside within a hydrophobic pocket [42], the same group
found that in PiD tau filaments, cryo-electron microscopy
showed S320 to most likely reside within a hydrophobic
pocket [43]; thus, the S to F mutation could act by stabi-
lizing this structure. Agreeing with the proposed structure of
PiD tau filaments, S320F has been neuropathologically
compared to PiD, with an abundance of Pick bodies found
in a carrier’s brain [116]. Additionally, despite being
intrinsically disordered, tau can adopt a protective
paperclip-like global conformation, in which the MT-
binding repeat and C-terminal and N-terminal domains
approach each other [37]. The substitution of a large, aro-
matic side chain in the region where the C-terminal and
MT-binding domains interact could potentially disrupt this
fold, facilitating polymerization. This disruption of the
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paperclip-like structure of tau has been shown in vitro with
pseudo-phosphorylation of tau at the AT8 and PHF1 epi-
topes, which are markers of tau pathology [117]. Given
these two mutants’ unique properties, it was also found that
a double-mutant combination of either P301L or P301S
with S320F resulted in a rapid and robust aggregation even
without seeding [109].

The presence of aggregated tau inclusions remains a
constant between MAPT mutant cases, despite the poten-
tially different mechanisms that led to those inclusions. The
exact source of neurodegeneration, however, is unclear and
could be due to a number of factors. In AD, the rate of
cognitive decline correlates positively with the number of
NFTs in the brain [118], which could cause neurodegen-
eration through the disruption of cytoplasmic organelles or
by blocking axonal transport [119, 120]. However, evidence
in human AD cases has shown that, while correlative, the
number of NFTs can far exceed neuronal loss, and in rodent
models, many neurons have been shown to die without ever
forming NFTs [121–123]. Soluble oligomeric species of tau
have also been implicated in cellular toxicity when added in
culture as well as accelerated pathology when injected into
the hippocampus of transgenic mice [124, 125]; however,
the mechanisms of potential toxicity remain unclear.
Finally, unbound, aggregate-prone, or aggregated tau are
unable to perform their normal functions, namely main-
taining or assembling MTs; this, in itself, could lead to
neurodegeneration through MT disassembly and impaired
axonal transport.

Conclusions

Mutations in the MAPT gene can exert several different
effects on the functions and properties of tau. These effects
can overlap or be completely distinct between mutations,
but all result in the formation of aggregated tau inclusions
with neuronal loss and atrophy. Mutations that affect tau
mRNA splicing can alter the ratio of tau isoforms and lead
to the potential dysregulation of MT dynamics as well as an
isoform-specific overabundance of soluble, free-floating
tau. Mutations that functionally affect tau’s ability to bind
to, promote the assembly of or stabilize MTs may also lead
to neurodegeneration in a similar manner: through the
dysregulation of MT dynamics and/or tau mislocalization,
leading to an increase in MT-unattached tau. In both of
these instances, this increased amount of unbound tau could
increase the usually minute chance of nucleation events
occurring, or these proteins could interact with polyanionic
molecules in the cytosol, leading to an eventual cascade of
elongation and seeding. For other mutations that increase
aggregation propensity and/or seeding, perhaps they func-
tion under a similar mechanism, but with a higher

susceptibility to β-sheet formation and aggregation, speed-
ing up the pathological process. Importantly, impaired MT
function and aberrant tau aggregation are not mutually
exclusive pathogenic mechanisms. However, it is note-
worthy that the observed differences in seeding propensities
between different tau mutants do not correlate with an
earlier age of onset or shorter duration of disease [12, 116],
suggesting that tau loss of function, such as impacts on MT
activities or perhaps some still undiscovered functions of
tau, could be more important for pathogenesis than a rela-
tive increase in aberrant aggregation propensity.

Given the wide-ranging and unique differences between
tau mutants, the choice of models used is important. The
question remains, however, as to whether utilizing specific
tau mutants—namely those at the P301 residue—in the
context of aggregation and seeding studies constitutes a
model mechanistically similar and applicable to other
mutations in FTD and/or sporadic tauopathy: an important
fact to consider when utilizing these models to demonstrate
therapeutic efficacy.
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