Article | Published:

miR-608 and miR-4513 significantly contribute to the prognosis of lung adenocarcinoma treated with EGFR-TKIs

Laboratory Investigation (2018) | Download Citation

Abstract

Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptors (EGFR) significantly prolong the survival of lung adenocarcinoma patients with sensitizing EGFR mutations. Unfortunately, 10–30% patients do not show objective responses to EGFR-TKIs, and undergo rapid disease progression during the EGFR-TKIs therapy. Single nucleotide polymorphisms (SNPs) in mature microRNA (miRNA) sequences may influence target site interactions and modulate downstream pathways, such as the EGFR pathway. For this reason, we hypothesized that miRNA SNPs may impact the prognosis of lung adenocarcinoma patients after EGFR-TKI treatment. By systematically screening of the miRbase and the 1000 genomes project databases, we successfully identified five mature miRNA SNPs. Genotypes were determined in two independent cohorts (Hubei and Shandong cohorts) that include 319 EGFR-TKI treated stage IIIB/IV patients. The impact of miR-608 and miR-4513 on the drug sensitivity of gefitinib was examined in lung adenocarcinoma cells. miR-608 rs4919510 or miR-4513 rs2168518 significantly contributed to the progression-free survival (PFS) in the Hubei cohort (hazard ratio [HR] = 0.63, confidence interval [CI] = 0.49–0.81, P = 3.0 × 10−4 or HR = 0.46, 95% CI = 0.31–0.67, P = 8.0 × 10−5). These observations were further validated in the Shandong cohort (P = 0.005 or P = 0.001). Similarly, the miR-608 rs4919510 CC genotype or the miR-4513 rs2168518 GA genotype was significantly associated with decreased death risk after gefitinib treatment, compared with the rs4919510 GG genotype (Hubei cohort: P = 5.0 × 10−4; Shandong cohort: P = 0.004) or the rs2168518 GG genotype (P = 4.9 × 10−5; P = 0.002). Consistently, miR-608 significantly increased the anti-proliferation effect of gefitinib in both lung adenocarcinoma PC9 and H1299 cells, whereas miR-4513 increased cells’ resistance to gefitinib. Our findings suggest that miR-608 and miR-4513 SNPs are independent candidate biomarkers to predict lung adenocarcinoma patients’ survival after EGFR-TKIs treatment. These miRNAs and polymorphisms provide clinical potential in patient-tailored treatment decision-making.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

  2. 2.

    Liu KJ, Guan ZZ, Liang Y, Yang XQ, Peng J, Huang H, et al. A double-blind, randomized phase II study of dicycloplatin plus paclitaxel versus carboplatin plus paclitaxel as first-line therapy for patients with advanced non-small-cell lung cancers. Arch Med Sci. 2014;10:717–24.

  3. 3.

    Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M, Tanimoto M. Addition of platinum compounds to a new agent in patients with advanced non-small-cell lung cancer: a literature based meta-analysis of randomised trials. Ann Oncol. 2004;15:1782–9.

  4. 4.

    Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42.

  5. 5.

    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

  6. 6.

    Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13:239–46.

  7. 7.

    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.

  8. 8.

    Douillard JY, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer. 2014;110:55–62.

  9. 9.

    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.

  10. 10.

    De Sousa EMF, Vermeulen L, Fessler E, Medema JP. Cancer heterogeneity—a multifaceted view. EMBO Rep. 2013;14:686–95.

  11. 11.

    Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–8.

  12. 12.

    Yuan J, Li B, Zhang N, Zhu H, Zhou L, Zhang L, et al. Clinical implications of the BIM deletion polymorphism in advanced lung adenocarcinoma treated with gefitinib. Clin Lung Cancer. 2018;19:e431–8.

  13. 13.

    Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13:e249–58.

  14. 14.

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

  15. 15.

    Wu L, Belasco JG. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell. 2008;29:1–7.

  16. 16.

    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

  17. 17.

    Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

  18. 18.

    Luo P, Yang Q, Cong LL, Wang XF, Li YS, Zhong XM, et al. Identification of miR124a as a novel diagnostic and prognostic biomarker in nonsmall cell lung cancer for chemotherapy. Mol Med Rep. 2017;16:238–46.

  19. 19.

    Zhang Y, Li H, Han J, Zhang Y. Down-regulation of microRNA-124 is correlated with tumor metastasis and poor prognosis in patients with lung cancer. Int J Clin Exp Pathol. 2015;8:1967–72.

  20. 20.

    Saito M, Shiraishi K, Matsumoto K, Schetter AJ, Ogata-Kawata H, Tsuchiya N, et al. A three-microRNA signature predicts responses to platinum-based doublet chemotherapy in patients with lung adenocarcinoma. Clin Cancer Res. 2014;20:4784–93.

  21. 21.

    Pu X, Roth JA, Hildebrandt MA, Ye Y, Wei H, Minna JD, et al. MicroRNA-related genetic variants associated with clinical outcomes in early-stage non-small cell lung cancer patients. Cancer Res. 2013;73:1867–75.

  22. 22.

    Qiu F, Yang L, Ling X, Yang R, Yang X, Zhang L, et al. Sequence variation in mature microRNA-499 confers unfavorable prognosis of lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res. 2015;21:1602–13.

  23. 23.

    Xie K, Chen M, Zhu M, Wang C, Qin N, Liang C, et al. A polymorphism in miR-1262 regulatory region confers the risk of lung cancer in Chinese population. Int J Cancer. 2017;141:958–66.

  24. 24.

    Zheng J, Deng J, Xiao M, Yang L, Zhang L, You Y, et al. A sequence polymorphism in miR-608 predicts recurrence after radiotherapy for nasopharyngeal carcinoma. Cancer Res. 2013;73:5151–62.

  25. 25.

    Yang X, Yu D, Ren Y, Wei J, Pan W, Zhou C, et al. Integrative functional genomics implicates EPB41 dysregulation in hepatocellular carcinoma risk. Am J Hum Genet. 2016;99:275–86.

  26. 26.

    Shi M, Xia J, Xing H, Yang W, Xiong X, Pan W, et al. The Sp1-mediaded allelic regulation of MMP13 expression by an ESCC susceptibility SNP rs2252070. Sci Rep. 2016;6:27013.

  27. 27.

    Shi M, Ma F, Liu J, Xing H, Zhu H, Yu J, et al. A functional BRCA1 coding sequence genetic variant contributes to prognosis of triple-negative breast cancer, especially after radiotherapy. Breast Cancer Res Treat. 2017;166:109–16.

  28. 28.

    Ren Y, Shang J, Li J, Liu W, Zhang Z, Yuan J, et al. The long noncoding RNA PCAT-1 links the microRNA miR-215 to oncogene CRKL-mediated signaling in hepatocellular carcinoma. J Biol Chem. 2017;292:17939–49.

  29. 29.

    Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M. miRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett. 2017;390:126–36.

  30. 30.

    Chan SK, Gullick WJ, Hill ME. Mutations of the epidermal growth factor receptor in non-small cell lung cancer—search and destroy. Eur J Cancer. 2006;42:17–23.

  31. 31.

    Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer. 2009;45:2197–206.

  32. 32.

    Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer. 2011;129:2621–31.

  33. 33.

    Mizuno K, Seki N, Mataki H, Matsushita R, Kamikawaji K, Kumamoto T, et al. Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. Int J Oncol. 2016;48:450–60.

  34. 34.

    Liu C, Luo J, Zhao YT, Wang ZY, Zhou J, Huang S, et al. TWIST1 upregulates miR-214 to promote epithelial-to-mesenchymal transition and metastasis in lung adenocarcinoma. Int J Mol Med. 2018;42:461–70.

  35. 35.

    Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

  36. 36.

    Sclafani F, Chau I, Cunningham D, Lampis A, Hahne JC, Ghidini M, et al. Sequence variation in mature microRNA-608 and benefit from neo-adjuvant treatment in locally advanced rectal cancer patients. Carcinogenesis. 2016;37:852–7.

  37. 37.

    Yin Z, Cui Z, Ren Y, Xia L, Wang Q, Zhang Y, et al. Association between polymorphisms in pre-miRNA genes and risk of lung cancer in a Chinese non-smoking female population. Lung Cancer. 2016;94:15–21.

  38. 38.

    Wu S, Yuan W, Shen Y, Lu X, Li Y, Tian T, et al. The miR-608rs4919510 polymorphism may modify cancer susceptibility based on type. Tumour Biol. 2017;39:1010428317703819.

  39. 39.

    Pardini B, Rosa F, Naccarati A, Vymetalkova V, Ye Y, Wu X, et al. Polymorphisms in microRNA genes as predictors of clinical outcomes in colorectal cancer patients. Carcinogenesis. 2015;36:82–6.

  40. 40.

    Ghanbari M, Erkeland SJ, Xu L, Colijn JM, Franco OH, Dehghan A, et al. Genetic variants in microRNAs and their binding sites within gene 3′UTRs associate with susceptibility to age-related macular degeneration. Hum Mutat. 2017;38:827–38.

  41. 41.

    Ghanbari M, de Vries PS, de Looper H, Peters MJ, Schurmann C, Yaghootkar H, et al. A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum Mutat. 2014;35:1524–31.

  42. 42.

    Othman N, Nagoor NH. miR-608 regulates apoptosis in human lung adenocarcinoma via regulation of AKT2. Int J Oncol. 2017;51:1757–64.

  43. 43.

    Othman N, In LL, Harikrishna JA, Hasima N. Bcl-xL silencing induces alterations in hsa-miR-608 expression and subsequent cell death in A549 and SK-LU1 human lung adenocarcinoma cells. PLoS One. 2013;8:e81735.

  44. 44.

    Liang Z, Wang X, Xu X, Xie B, Ji A, Meng S, et al. MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway. Mol Cancer. 2017;16:96.

  45. 45.

    Zhang Y, Schiff D, Park D, Abounader R. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One. 2014;9:e91546.

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31671300 and 31871306); Taishan Scholars Program of Shandong Province (tsqn20161060).

Author information

Author notes

  1. These authors contributed equally: Nasha Zhang, Yankang Li.

Affiliations

  1. Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China

    • Nasha Zhang
    •  & Yankang Li
  2. Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China

    • Nasha Zhang
    • , Yankang Li
    • , Yan Zheng
    • , Jinming Yu
    •  & Ming Yang
  3. Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China

    • Li Zhang
  4. Department of Neurology, Stanford University, Palo Alto, CA, USA

    • Yuan Pan

Authors

  1. Search for Nasha Zhang in:

  2. Search for Yankang Li in:

  3. Search for Yan Zheng in:

  4. Search for Li Zhang in:

  5. Search for Yuan Pan in:

  6. Search for Jinming Yu in:

  7. Search for Ming Yang in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Ming Yang.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41374-018-0164-y