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Abstract
Ki67 expression has been a valuable prognostic variable in breast cancer, but has not seen broad adoption due to lack of
standardization between institutions. Automation could represent a solution. Here we investigate the reproducibility of Ki67
measurement between three image analysis platforms with supervised classifiers performed by the same operator, by
multiple operators, and finally we compare their accuracy in prognostic potential. Two breast cancer patient cohorts were
used for this study. The standardization was done with the 30 cases of ER+ breast cancer that were used in phase 3 of
International Ki67 in Breast Cancer Working Group initiatives where blocks were centrally cut and stained for Ki67. The
outcome cohort was from 149 breast cancer cases from the Yale Pathology archives. A tissue microarray was built from
representative tissue blocks with median follow-up of 120 months. The Mib-1 antibody (Dako) was used to detect Ki67
(dilution 1:100). HALO (IndicaLab), QuantCenter (3DHistech), and QuPath (open source software) digital image analysis
(DIA) platforms were used to evaluate Ki67 expression. Intraclass correlation coefficient (ICC) was used to measure
reproducibility. Between-DIA platform reproducibility was excellent (ICC: 0.933, CI: 0.879–0.966). Excellent
reproducibility was found between all DIA platforms and the reference standard Ki67 values of Spectrum Webscope
(QuPath-Spectrum Webscope ICC: 0.970, CI: 0.936–0.986; HALO-Spectrum Webscope ICC: 0.968, CI: 0.933–0.985;
QuantCenter-Spectrum Webscope ICC: 0.964, CI: 0.919–0.983). All platforms showed excellent intra-DIA reproducibility
(QuPath ICC: 0.992, CI: 0.986–0.996; HALO ICC: 0.972, CI: 0.924–0.988; QuantCenter ICC: 0.978, CI: 0.932–0.991).
Comparing each DIA against outcome, the hazard ratios were similar. The inter-operator reproducibility was particularly
high (ICC: 0.962–0.995). Our results showed outstanding reproducibility both within and between-DIA platforms, including
one freely available DIA platform (QuPath). We also found the platforms essentially indistinguishable with respect to
prediction of breast cancer patient outcome. Results justify multi-institutional DIA studies to assess clinical utility.

Introduction

Ki67 labeling index (Ki67 LI) is currently one of the most
promising yet controversial biomarkers in breast cancer [1].
The European Society for Medical Oncology (ESMO)

Clinical Practice Guidelines suggests that Ki67 LI may
provide useful information, if the assay can be standardized
[2]. The St. Gallen Consensus Conference in 2017 also
agreed that Ki67 LI could be used to distinguish between
HER2-negative luminal A-like and luminal B-like breast
cancer subtypes [3]. However, the panel also emphasized
the reproducibility issue of Ki67 LI, suggesting calibration
of Ki67 scoring [3]. The American Society of Clinical
Oncology recommended against the use of Ki67 LI for
prognosis in newly diagnosed breast cancer patients
because of lack of reproducibility across laboratories [4].
The International Ki67 in Breast Cancer Working Group
(IKWG) has nevertheless published consensus recommen-
dations for the application of Ki67 IHC in daily practice [5].
According to this group, parameters that predominantly
influence the Ki67 IHC results include pre-analytical
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(type of biopsy and tissue handling), analytical (IHC pro-
tocol), interpretation and scoring, and data analysis steps
[5]. Although these IKWG recommendations provide a
guideline to improve pre-analytical and analytical con-
sistency, inter-laboratory protocols still showed poor
reproducibility related to different sampling, fixation, anti-
gen retrieval, staining, and scoring methods [5, 6]. As the
latter was the largest single contributor to assay variability,
the IKWG has undertaken efforts to standardize visual
scoring of Ki67 [7, 8], which requires on-line calibration
tools and careful scoring of several hundred cells, which
may or may not be practical for surgical pathologists to
implement.

The emergence of digital image analysis (DIA) platforms
has improved capacity and automation in biomarker eva-
luation [9]. DIA platforms are able to assess Ki67 LI and
several studies have been conducted to compare manual
scoring with DIA platforms [10–14]. However, different
platforms have unique algorithms to segment and classify
tissue and cellular compartments [10–12, 14, 15]. Finally,
comparison studies of different platforms have been done
by the International Ki67 Working Group, but not yet
published at the time of this submission.

In this study, reproducibility of Ki67 LI was investigated
across three DIA platforms with supervised classifiers
applied by the same operator and by multiple operators. The
effect of different training methods on automated
Ki67 scoring was also investigated. In addition, by applying
to an annotated series of breast cancers, the outcome pre-
diction potential of the DIA platforms was also compared to
each other.

Materials and methods

Patients

Two distinct breast cancer patient cohorts were employed in
these investigations, totaling 179 patients. Cohort 1 is
represented by 30 cases of ER+ breast cancer that were
used in phase 3 of IKWG initiatives [7]. No survival data
was available for this cohort, which was approved for the
study by the British Columbia Cancer Agency’s Clinical
Research Ethics Board (H10-03420). Cohort 2 comprises
149 breast cancer cases from the Pathology Department,
Yale University, New Haven, CT, USA diagnosed between
1976 and 2003, with 120 months median follow-up for
breast cancer-specific survival and 112 months median
follow-up for relapse-free survival (RFS). The patient age at
diagnosis ranged from 31 to 85 years, with a median age
at diagnosis of 56 years (Table 1). All patients’ breast
cancers had been surgically excised. Pathological features
were retrieved from the pathology reports or the original
H&E-stained slides were reviewed. This patient cohort was
approved for the study by the Yale Human Investigation
Committee under protocol #9505008219.

Tissue preparation and immunohistochemistry (IHC)

Preparation of the Ki67 slides of the first cohort has been
previously described [7]. Briefly, the 30 core-cut biopsy
blocks were centrally cut and stained with Ki67, resulting in
30 Ki67 slides from 30 cases. The IHC reaction was per-
formed using monoclonal antibody Mib-1 at dilution 1:50
(DAKO UK, Cambridgeshire, UK) using an automated
staining system (Ventana Medical Systems, Tucson,

Table 1 Clinicopathological data of the patients

Patients n, % 149 100%

Age Mean ± SD,
range

56.64 ±
12.88

31–85

Tumor size (mm) Mean ± SD 18.17 ±
10.44

Lymph node status

0 n, % 107 71.8%

1 n, % 12 8.1%

2 n, % 2 1.3%

No data n, % 28 18.8%

ER status

Positive n, % 86 57.7%

Negative n, % 39 26.2%

Unknown n, % 24 16.1%

PgR status

Positive n, % 74 49.7%

Negative n, % 51 34.2%

Unknown n, % 24 16.1%

HER2 status

Positive n, % 15 10.1%

Negative n, % 112 75.2%

Unknown n, % 22 14.7%

Adjuvant hormone
therapy

Yes n, % 71 47.7%

No n, % 51 34.2%

Unknown n, % 27 18.1%

Adjuvant chemotherapy

Yes n, % 52 34.9%

No n, % 69 46.3%

Unknown n, % 28 18.8%

Follow-up (months)

BCSOS Median, IQT 120 111

RFS Median, IQT 112 110

BCSOS breast cancer-specific overall survival, RFS relapse-free
survival, IQT interquartile range

108 B. Acs et al.



AZ, USA) according to the consensus criteria established
by the International Ki67 Working Group [5].

In the second cohort, a tissue microarray was built from
representative 10% neutrally buffered FFPE tissue blocks.
Tumor areas were selected by pathologists based on
hematoxylin and eosin-stained slides. Duplicate cores
(each 0.6 mm in diameter) were punched from each case.
The Mib-1 mouse monoclonal antibody (Dako, Carpinteria,
CA, USA) was used to detect Ki67 [16]. This antibody had
been previously validated by our research group [17, 18].
Slides were deparaffinized by heating for 1 h at 60 °C and
soaked in xylene twice for 20 min, and were rehydrated in
ethanol (twice in 100% ethanol for 1 min, twice in 95%
ethanol for 1 min, once in 85% ethanol, and once in 75%
ethanol). Antigen retrieval was performed in a PT module
(LabVision, Fremont, CA, USA) with citrate buffer
(pH 6.0) at 97 °C for 20 min. Endogenous peroxidase
activity was blocked with hydrogen peroxide in methanol
at room temperature for 30 min. Non-specific antigens were

blocked with incubation in 0.3% bovine serum albumin
in Tris-buffered saline/Tween for 30 min. Slides were
then incubated with Ki67 mouse monoclonal antibody
(1:100 dilution) for 1 h at room temperature. Next, slides
were incubated in mouse EnVision reagent (Dako) for 1 h
at room temperature. The EnVision reagent contains a
mouse secondary antibody conjugated to many molecules
of horseradish peroxidase (HRP). Slides were then incu-
bated in hematoxylin and DAB to detect reactions.

Digital image analysis (DIA)

The Aperio ScanScope XT platform was used at ×40 to
digitize the slides. Three different DIA platforms were used
to evaluate Ki67 LI as follows: HALO (IndicaLab, Corrales,
NM, USA), QuantCenter (3DHistech, Budapest, Hungary),
and QuPath (open source software [19]). All software use
color deconvolution, cell segmentation algorithms (e.g.,
Watershed cell detection) and supervised classifiers as

Fig. 1 Representative pictures of digital image analysis (DIA) masks
on a low cellular density breast cancer case (a). The first step of
analysis with HALO (b) and QuantCenter (d) is the training of
machine-learning classification to identify a tissue pattern (in this case
areas of tumor cells) to be scored. Then, the cell segmentation is only
applied in the annotations designated by the machine-learning classi-
fication. Thus, only tumor cells are shown in the DIA masks for both
HALO and QuantCenter. Blue indicates negative tumor cells, and

yellow, orange, and red indicate 1+, 2+, and 3+ positive tumor cells.
In QuPath (c), the order of operations is switched, so that cell seg-
mentation is the first, followed by machine-learning classification to
identify a sub-population of cells to be scored (in this case tumor
cells). Green indicates stromal cells, purple marks immune cells, blue
corresponds to negative tumor cells, and yellow, orange, and red
indicate 1+, 2+, and 3+ positive tumor cells
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machine-learning methods [20–22]. All these DIA plat-
forms were trained to identify tumor cells, stromal cells, and
immune cells (Figs. 1 and 2). As a ground truth to the
machine-learning methods, we also evaluated Ki67 LI
with meticulous manual tissue segmentation (crop areas of
stromal and immune compartments) after automatic cell
segmentation using the Spectrum Webscope platform with
Nuclear algorithm (Aperio). When the reproducibility of
Ki67 LI and the effect of different training methods on the
Ki67 LI were investigated among three DIA platforms, all
DIA were performed by an MD post-doc with expertise in
breast pathology. As a machine-learning method, we used a
random forest supervised classifier in QuPath and HALO
platforms [23]; while QuantCenter applies wavelet-based
multilevel feature extraction for pattern recognition [24, 25].
After setting the optimal color deconvolution and cell seg-
mentation in all DIA platforms, training of the machine-
learning methods was performed on the core-cut biopsy
slides (first cohort) as follows: (I) Training was performed

on one randomly selected slide (DIA 1). (II) Repeat training
on the same slide at least 4 days later (DIA 1.1). (III)
Training on another randomly selected slide (DIA 1.2). (IV)
Training on five randomly selected slides (DIA 5). (V)
Repeat training on the same five slides at least 4 days later
(DIA 5.1). (VI) Training on another randomly selected five
slides (DIA 5.2). For the QuantCenter software, the training
was only possible on one slide. Thus, training methods
IV–VI were not applied for QuantCenter. When outcome
prediction potential of the DIA platforms was investigated,
the same color deconvolution and cell segmentation settings
were applied. The training of the machine-learning method
was performed on one slide, because the second cohort
consisted of one tissue microarray block.

When the reproducibility of Ki67 LI was investigated
among four different operators (A–D), QuPath was used to
evaluate Ki67 LI. One of the four operators was an
experienced breast pathologist, two of the four were MD
post-docs with expertise in breast pathology. One operator

Fig. 2 Representative pictures of digital image analysis (DIA) masks
on a high cellular density breast cancer case (a). The first step of
analysis with HALO (b) and QuantCenter (d) is the training of
machine-learning classification to identify the tissue pattern (in this
case areas of tumor cells) to be scored. Then, the cell segmentation is
only applied in the annotations designated by the machine-learning
classification. Thus, only tumor cells are shown in the DIA masks for
both HALO and QuantCenter. Blue indicates negative tumor cells, and

yellow, orange, and red indicate 1+, 2+, and 3+ positive tumor cells.
In QuPath (c), the order of operations is switched, so that cell seg-
mentation is the first, followed by machine-learning classification to
identify a sub-population of cells to be scored (in this case tumor
cells). Green indicates stromal cells, purple marks immune cells, blue
corresponds to negative tumor cells, and yellow, orange, and red
indicate 1+, 2+, and 3+ positive tumor cells
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out of the four was a post-doc researcher with expertise in
breast pathology. All the operators used the same color
deconvolution and cell segmentation setting that has been
previously optimized. However, all the operators were free
to train the machine-learning method on the same slide by
annotating cells into the following classes: tumor cells,
stromal cells, and immune cells. At least 4 days later, the
DIA training was repeated on the same slide. To minimize
the effect of intra-platform variability to inter-operator
reliability, the mean Ki67 LI value of the two DIA eva-
luations were compared among the operators.

Statistical analysis

For statistical analysis SPSS 22 software (IBM, Armonk,
USA) was used. The reproducibility among DIA platforms
and operators was estimated by calculating an intraclass
correlation coefficient (ICC). We considered ICC value
between 0.4 and 0.6 as moderate reliability, values between
0.61 and 0.8 indicate good reliability, and values greater
than 0.8 indicate excellent reliability [26]. Kaplan–Meier
analysis supported with log-rank test was executed to
assess prognostic potential. Breast cancer-specific survival

Fig. 3 Comparison of digital image analysis (DIA) platforms and
different training methods. In spaghetti plots (a, b), each line repre-
sents Ki67 LI scores from one DIA platform, with a specific training
method across the 30 cases. The bold black lines show Ki67 scores at

10, 20, and 30%. On the heat map of Ki67 scores (c), each row
represents a case and each column represents a DIA platform, with a
specific training method. Cases are ordered by the median scores
(across DIA platforms)
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Fig. 4 Inter-platform variability of Ki67 LI. Since QuantCenter
allowed to train only on one slide, a represents HALO and QuPath
with one slide and five slides training. b shows all the platforms with
only one slide training. The bottom/top of the box in each box plot

represent the first (Q1)/third (Q3) quartiles, the bold line inside the box
represents the median and the two bars outside the box represent the
lowest/highest datum still within 1.5× the interquartile range (Q3–Q1).
Outliers are represented with circles and extreme outliers with asterisk
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was defined as the elapsed time from the date of primary
diagnosis of the tumor to the date of death caused by breast
cancer, or when patients were last censored if died of non-
breast cancer cause or still alive. RFS was defined as time
from the date of primary diagnosis to the occurrence of first

relapse. Data were visualized using boxplots spaghetti plots
and heat maps.

Results

Reproducibility of Ki67 LI among DIA platforms
and training methods

Reproducibility among the DIA platforms was excellent
(ICC: 0.933, CI: 0.879–0.966). The between-DIA platform
reproducibility was better when applying training on five
slides (ICC: 0.974, CI: 0.944–0.988) compared to applying
training on one slide (ICC: 0.921, CI: 0.836–0.962, Fig. 3).
QuPath returned systematically lower Ki67 LI results
compared to HALO and QuantCenter platforms (Fig. 4). All
DIA platforms showed excellent reproducibility with the
reference standard Ki67 LI values of Spectrum Webscope
(QuPath-Spectrum Webscope ICC: 0.970, CI: 0.936–0.986;
HALO-Spectrum Webscope ICC: 0.968, CI: 0.933–0.985;
QuantCenter-Spectrum Webscope ICC: 0.964, CI:
0.919–0.983).

The intra-DIA reproducibility was also excellent for
all platforms (QuPath ICC: 0.992, CI: 0.986–0.996;
HALO ICC: 0.972, CI: 0.924–0.988; QuantCenter ICC:
0.978, CI: 0.932–0.991). QuPath had the highest intra-
DIA platform reproducibility and the lowest variability
(Fig. 5). QuPath did not show systematic change in Ki67
LI values whether the DIA training was performed on
one slide or five slides. However, HALO Ki67 LI values
were systematically lower when the DIA training was per-
formed on five slides compared to training performed on
one slide (Fig. 3).

Prognostic potential of DIA platforms regarding
Ki67 LI

For assessing breast cancer prognosis by Ki67 LI using a
10% cutpoint, either QuPath, or HALO and QuantCenter
could perform statistically significant splitting of our cohort
into patients’ group with statistically significant breast
cancer-specific survival or RFS differences (Fig. 6). The
hazard ratios of the DIA platforms ranged from 2.7 to 3.7,
but were all comparable, with broadly overlapping 95%
confidence intervals.

Reproducibility among four operators using the
same DIA platform to evaluate Ki67 LI

The between-DIA platform reproducibility was excellent
among all DIA platforms and QuPath showed the lowest
intra-DIA platform variability. Thus, we selected the
QuPath platform to investigate the reproducibility of Ki67

Fig. 5 Intra-platform variability of Ki67 LI. Each line represents Ki67
LI scores from one DIA platform, with a specific training method
across the 30 cases. The bold black lines show Ki67 scores at 10, 20,
and 30%
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Fig. 6 Kaplan–Meier plots of automated Ki67 scores from the investigated digital image analysis platforms. P values are from Log-rank test
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LI across four different operators using DIA. The four
operators using QuPath to evaluate Ki67 LI had excellent
reproducibility (ICC: 0.990, CI: 0.959–0.996, Fig. 7). The

intra-rater reproducibility was also excellent for all the
operators. The lowest intra-rater reproducibility was 0.962
(CI: 0.799–0.990), and the highest 0.995 (CI: 0.962–0.998).

Fig. 7 Comparison of four
operators (a–d) using the same
DIA platform. In spaghetti plots
(a–e), each line represents Ki67
LI scores from one operator
across the 30 cases. The bold
black lines show Ki67 scores at
10, 20, and 30%. a shows
interobserver variability based
on the mean of two evaluations
for each operator. b–e represent
the intra-observer variability for
each operator based on two
evaluations (1 and 1.1). On the
heat map of Ki67 scores (f),
each row represents a case and
each column represents an
operator. Cases are ordered by
the median scores (across
operators)

Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study 115



Discussion

Although it has long been acknowledged that detection of
Ki67-positive tumor cells might provide prognostic and
predictive information in breast cancer [27–30], it has not
been widely adopted for clinical breast cancer management
due to inter-operator and inter-institutional variability. Key
contributors to variability include pre-analytical and tech-
nical aspects, and most significantly, lack of reproducibility
in scoring across laboratories [6, 8]. Adding DIA to the
pathological evaluation could improve standardization of
this aspect of Ki67 assessment.

As the algorithms of several DIA platforms process
staining patterns differently, cellular features, tissue mor-
phology, and inter-DIA platform variability affect the
Ki67 score [12, 31]. Thus, we aimed to investigate the inter-
platform reproducibility across three independent DIA
platforms applied to the same scanned images. Our results
showed an excellent reproducibility (ICC: 0.933) among
different DIA platforms suggesting that Ki67 LI could be
broadly adopted if the DIA platform used at a given insti-
tution was calibrated to some centralized standard. To the
best of our knowledge, no similar study has yet been pub-
lished, wherein inter-platform reproducibility was investi-
gated in Ki67 LI scoring between DIA platforms using
different machine-learning methods. In a recent study by
Koopman et al., the inter-platform agreement was investi-
gated in Ki67 LI between two DIA platforms using virtual
dual staining (VSD) [32]. The authors stained adjacent
sections for cytokeratin (CK) 8/18 and Ki67. Then, the
corresponding sections were digitally aligned to score Ki67
LI in the CK-positive areas. These authors found a very
high correlation between two DIA platform using VSD.
However, neither machine-learning methods to distinguish
tissue patterns nor prognostic potential of DIA platforms
regarding Ki67 LI was investigated [32]. In another detailed
study by Paulik et al., the authors developed a DIA algo-
rithm to detect cell nuclei in different IHC and FISH-stained
breast samples [33]. The authors compared the sensitivity
and positive predictive values (PPV) of their own and other
DIA platforms in cell nuclei detection using manual nuclear
marking as a reference standard. Although the authors
revealed that the DIA platforms had PPV values in a range
between 87 and 94%, the inter-platform reproducibility in
Ki67 LI was not investigated [33].

Calibration and validation is crucial to the success of
DIA [34]. In our study, all DIA platforms achieved excel-
lent reproducibility with the reference standard (ICC:
0.964–0.970). This observation suggests that standardiza-
tion of the platforms may be required for highly repro-
ducible scores in Ki67 evaluation. Therefore, we
investigated the effect of different training methods on
automated Ki67 scoring. Our results revealed that the inter-

platform reproducibility was better when applying training
on five slides compared to applying training on one slide.
The intra-platform reproducibility was also excellent in all
investigated DIA platforms (ICC: 0.972–0.992). Operators
can also affect outcome when using DIA. We found an ICC
of 0.990 (CI: 0.959–0.996) among four operators using
the same, calibrated DIA platform suggesting a highly
reproducible Ki67 scoring method. Finally, it is always best
to measure a new approach against outcome, rather than a
previous method (in this case pathologist-read Ki67). Using
annotated retrospective cohorts, our study showed that the
automated Ki67 LI score of all three investigated DIA
platforms was suitable to separate patients into good and
unfavorable prognosis groups.

There are a number of limitations in this study. One
limitation is study size. We used a low number of operators
using DIA platform to evaluate Ki67, which may affect the
power of the inter-rater results. We were also only able to
test three software packages. Further studies are needed to
investigate whether the training of different DIA platforms
with machine-learning algorithms affects inter-laboratory
reproducibility, especially in case of staining protocol dif-
ferences or using different slide scanners.

In conclusion, our results suggest that DIA can be fairly
easily standardized and may lead to highly reproducible,
platform-independent scores in Ki67 evaluation. Our results
suggest that automated Ki67 scoring could be independent
of platform, operator, or vendor. We believe that this study
is the first step of the standardization of automated DIA
systems and also a step toward to utilizing Ki67 LI in
clinical care. A multi-institutional DIA study is underway to
prove clinical validity and utility.
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