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Abstract
Angiotensin-converting enzyme (ACE) and ACE2 play a critical role in the renin–angiotensin system (RAS) by altering
angiotensin II (ANGII) levels, thus governing its deleterious effects. Both enzymes are altered by sex and diabetes, and play
an important role in the development of diabetic nephropathy (DN). Importantly, previous evidence in diabetic and ACE2-
deficient (ACE2KO) males suggest a sex-dependent crosstalk between renal ACE and ACE2. In the present work, we aimed
to study the sex-specific susceptibility to diabetes and direct infusion of ANGII in kidney disease progression, with a special
focus on its link to ACE2 and ACE. In our mouse model, ANGII promoted hypertension, albuminuria, reduced glomerular
filtration, and glomerular histological alterations. ANGII adverse effects were accentuated by diabetes and ACE2 deficiency,
in a sex-dependent fashion: ACE2 deficiency accentuated ANGII-induced hypertension, albuminuria, and glomerular
hypertrophy in diabetic females, whereas in diabetic males exacerbated ANGII-mediated glomerular hypertrophy, mesangial
expansion, and podocyte loss. At the molecular level, ANGII downregulated renal ACE gene and enzymatic activity levels,
as well as renin gene expression in ACE2KO mice. Interestingly, male sex and diabetes accentuated this effect. Here we
show sex dimorphism in the severity of diabetes- and ANGII-related renal lesions, and demonstrate that ACE2- and ACE-
related compensatory mechanisms are sex-specific. Supporting our previous findings, the modulation and ANGII-mediated
crosstalk between ACE2 and ACE in DN progression was more evident in males. This work increases the understanding of
the sex-specific role of ACE2 and ACE in DN, reinforcing the necessity of more personalized treatments targeting RAS.

Diabetes is the leading cause of end-stage renal disease. In
addition, patients with diabetes are at high risk for cardio-
vascular disease, and the development of diabetic kidney

disease substantially increases their risk for morbidity and
mortality [1, 2]. Chronic effects of hyperglycemia on
inducing tissue injury occur via alterations of several
mechanisms [3–6]. Among them, dysregulation of the
renin–angiotensin system (RAS) plays a critical role in the
context of diabetes and hypertension [7–9]. RAS is an
important regulator of the cardiovascular and renal function,
and angiotensin II (ANGII) is considered its main molecular
effector [10]. ANGII induces endothelial lesion, blood
pressure (BP) increase, and hypertrophy [11] through its
receptors in the renal vasculature, glomeruli, and tubules
[12, 13]. Increases in glomerular ANGII are associated to
hypertension, mesangial expansion, glomerular filtration
rate (GFR) alterations, glomerulosclerosis, albuminuria, and
podocyte loss [14, 15]. In the tubulointerstitium, ANGII
stimulates tumor growth factor (TGF-β)-induced fibrosis
and inflammation, leading to apoptosis and irreversible
lesions [16, 17]. Cumulative evidence supports a deleterious
role of angiotensin-converting enzyme (ACE) and a
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protective role of ACE2 in the kidney, due to their capacity
to produce and degrade ANGII, respectively [18–20].

To prevent the pathological increase in ANGII,
pharmacological inhibition of the ANGII axis of RAS is a
common therapeutic strategy for treatment of hypertension
and diabetic nephropathy (DN) [21]. However, ACE
inhibitors and angiotensin-receptor blockers only achieve
partial reduction of albuminuria and non-durable
suppression of RAS [22]. Importantly, sex differences in
renal responses to RAS blockade have been demonstrated
[23–26], suggesting that sex-specific changes in the severity
of the disease and in RAS might be affecting the efficacy of
the treatment.

Among the scientific community there is an increased
need for including sex as a biological variable [27–29].
Interestingly, the effect of sex in kidney disease and RAS
has recently become the focus of many investigators [30].
Men are at higher risk of hypertension and DN than pre-
menopausal women [26, 31]. Furthermore, previous studies
showed sex-specific regulation of RAS in the diabetic kid-
ney and circulation [32, 33]. RAS components such as
angiotensinogen (AGT), renin, ACE, and ACE2 are also
modulated by castration, suggesting a strong hormonal
component [32, 34, 35] in this sexual dimorphism. We and
others have consistently demonstrated upregulation of renal
ACE2 and downregulation of renal ACE in diabetes, and
proposed these changes as compensatory mechanisms in
response to ANGII accumulation [36–39]. In our recent
work, we demonstrated that hypertension, kidney injury,
and reduction in renal ACE in diabetic male mice were
accentuated by ACE2 deficiency and prevented by gona-
dectomy [18]. These observations suggest that RAS-related

mechanisms involving ACE and ACE2 modulation are
activated in response to ANGII accumulation under patho-
logic conditions, and that these mechanisms are most likely
connected to each other and favored by male sex.

Here we evaluate the effect of sex, diabetes, and ANGII
infusion on DN progression, and its relation to the mod-
ulation and interaction between ACE2 and ACE. With our
findings, we demonstrate that sex differences in DN are
related to a sex-specific and ANGII-mediated crosstalk
between ACE2 and ACE.

Materials and methods

Animal model

Diabetes was induced to 10-week-old wild-type (WT) and
ACE2-deficient (ACE2KO), female and male C57BL/6
mice following the high-dose streptozotocin (STZ) Induc-
tion Protocol from the Animal Models of Diabetic Com-
plications Consortium with slight modifications [18]. Four-
hour-fasted mice were given two intraperitoneal injections
of 150 mg/kg STZ (Sigma) in two consecutive weeks.
Citrate buffer was used as vehicle and given to controls.
Mice were then followed by 12 weeks of diabetes (Fig. 1).
At 8 weeks of follow-up, control and diabetic mice received
sham surgery or implantation of an ANGII-loaded
mini-osmotic pump (Supplementary Information). ANGII
was infused for 28 days (Fig. 1). At the end of the study,
end-point blood glucose, body weight (BW), kidney weight
(KW), heart weight (HW), systolic and diastolic BP (SBP,
DBP), heart rate, urinary albumin excretion (UAE), and

Fig. 1 Timeline diagram that illustrates the experimental design of the
study. Male and female mice were genotyped at 3–4 weeks of age, and
classified as WT or ACE2KO. Diabetes was induced at 10–11 weeks
by a double intraperitoneal injection of 150 mg/kg of streptozotocin,
whereas sodium citrate was administered as vehicle to control groups.
After 8 weeks of diabetes, ANGII was infused for 28 days to male and

female, WT and ACE2KO, control and diabetic mice at a rate of 1.44
µg/day/g. End-point blood glucose, body weight, kidney weight, heart
weight, systolic and diastolic blood pressure, heart rate, urinary
albumin excretion, and glomerular filtration rate (GFR) were assessed.
Eight to twelve animals per group were included
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GFR were assessed, and subsequent molecular studies were
performed. Generation of ACE2KO mice has been pre-
viously described [18]. Mice were housed ad libitum in
ventilated cages. The Ethical Committee of Animal
Experimentation at Barcelona Biomedical Research Park
(CEEA-PRBB) approved these studies.

Surgical procedure for ANGII infusion

ANGII at a concentration of 25 mg/mL in water was ster-
ilized, lyophilized, and stored at −20 °C until use. The day
previous to the start of ANGII treatment, ANGII was
resuspended in 100 µL of 0.9% NaCl at 0.03654 mg/µL. For
each animal, a specific volume of ANGII solution was
loaded to an osmotic pump (ALZET #1004) to achieve an
infusion rate of 1.44 µg/day/g BW of ANGII during
28 days. Once the animals were anesthetized, activated
osmotic pumps loaded with ANGII were placed into the
subcutaneous space.

Physiological parameters

Fasting blood samples from the caudal vein were obtained
for glucose levels measurements with a glucometer system
(ACCU-CHEK, Roche). Mice were considered diabetic
when blood glucose levels higher than 250 mg/dL.

SBP, DBP, and heart rate were measured using the
CODA™ mouse tail-cuff system (Kent Scientific Corpora-
tion) as previously described [18]. Values were obtained
from conscious-trained mice on five consecutive morning
sessions at the end of follow-up. SBP and DBP are
expressed in mmHg, and heart rate in beats per minute
(bpm). UAE was determined using the albumin-to-
creatinine ratio (ACR) on morning spot urine collections.
Urine albumin and creatinine levels were measured by
ELISA (Albuwell M, Exocell) and a colorimetric assay
(Creatinine Companion, Exocell), respectively. ACR was
calculated and expressed as µg Alb/mg Crea. Mice were
anesthetized at the end of the study through a single
intraperitoneal (i.p.) injection of sodium pentobarbital
(45 mg/kg), and GFR was assessed using clearance kinetics
of plasma fluorescein isothiocyanate-inulin after a single
bolus injection as previously described [19]. GFR was
estimated in 5–8 animals per group and values were
expressed as µL/min/g of BW.

Histology

Paraffin blocks were cut at 3 µm and deparaffined in xylene
and rehydrated through graded alcohols. Sections were
stained with periodic acid–Schiff (PAS) and morphometric
studies were performed as previously [18, 37, 38]. Quan-
titative measurements were performed on Image J software

in a blinded fashion. Glomerular tuft area (GTA) and
mesangial area (MA) were measured in PAS-stained sec-
tions by the Image J software (NIH). Sirius Red staining
was performed on 4.5 µm kidney sections and tubulointer-
stitial, periglomerular, and intraglomerular collagen accu-
mulation were semiquantitatively evaluated (0–4 score) in a
blinded fashion.

Immunohistochemistry staining was performed for ACE
and the podocyte marker WT-1. Antigen retrieval was
performed with 0.01M Na-citrate, pH 6, on 3 µm kidney
sections by heating for 5 min in a pressure cooker. Sections
were incubated with rabbit polyclonal anti-WT-1 (1:1000,
Santa Cruz Biotechnology) or rabbit polyclonal anti-ACE
F940 (1:250, Bioworld). Horseradish peroxidase-
conjugated anti-rabbit (EnVisionTM, Dako) and anti-rat
IgG (1:100, A-5795, Sigma) were used as secondary anti-
bodies. Binding of antibodies was detected using the Liquid
DAB+ Substrate Chromogen System (Dako). Slides were
counterstained with hematoxylin.

For podocyte number determination, 20 micro-
photographs of glomeruli were taken at ×40 for each ani-
mal. WT-1-positive nuclei per glomeruli were counted in a
blinded fashion and referred to total glomerular cell number.

Gene expression

Renal cortex RNA was isolated from frozen kidney samples
using the Tripure Isolation Reagent (Roche). Briefly, 40–50
mg of cortical renal tissue were homogenized in 800 µL of
Tripure. One hundred and sixty microliters of chloroform
were then added and the mixture was centrifuged at
12,000 × g at 6 °C for 15 min. Transparent phase was
separated and RNA was precipitated by the addition of 400
µL of isopropanol and centrifugation at 12,000 × g at 6 °C
for 15 min. RNA pellet was washed with 75% ethanol and
resuspended with 50 µL of MQ-water. One microgram of
purified RNA was retrotranscribed (High Capacity cDNA
RT Kit, Applied Biosystems). Gene expression for Ace, Agt,
Ren, Col1a2, Tgfb1, and Mcp1 was assessed by real-time
quantitative PCR using LightCycler®480 SYBR Green I
Master (Roche) as previously [18]. Hprt was used as a
housekeeping gene. Primer sequences were synthesized by
Sigma-Aldrich and are described in Table S1.

Primer sequences (Sigma) are shown in Table S1.

Preparation of kidney cortical tissue for molecular
analysis

Kidney cortex samples were homogenized in a buffer
consisting of 50 mM HEPES, pH 7.4, 150 mM NaCl, 0.5%
Triton X-100, 0.025 mM ZnCl2, 0.1 mM Pefabloc SC Plus
(Roche), and EDTA-free protease inhibitor cocktail tablet
(Roche). Protein extracts were clarified by centrifugation at
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14,000 x g for 10 min at 4 °C. Protein concentration was
determined using the BCA Protein Assay Kit (Thermo
Scientific Pierce®).

ACE enzymatic activity

For ACE activity determination, 2 µL of serum or 0.5 µg of
protein were incubated in duplicate with 73 µL of reaction
buffer (0.5 M borate buffer and 5.45M N-hippuryl-His-Leu)
for 15 or 25 min at 37 oC, respectively. Twenty millimolar
of o-phthalaldehyde was added to the samples and formed a
fluorescent adduct with the ACE-catalyzed product L-histi-
dyl-L-leucine. Fluorescence was measured at λex360 nm and
λem485 nm. ACE enzymatic activity in serum and kidney
cortex was expressed as relative fluorescence unit (RFU)/
µL/min and RFU/µg/min, respectively.

Statistics

Statistical analyses between groups were performed by
Kruskal–Wallis test (SPSS 18.0). Non-parametric
Mann–Whitney tests were used for group-to-group com-
parisons. Significance was defined when P < 0.05. Data are
expressed as mean ± SEM.

Data availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Results

ANGII-induced physiological and renal functional
alterations were enhanced by ACE2 deficiency and
diabetes in a sex-dependent manner

As expected, in our model STZ-treated groups showed
significant hyperglycemia compared with controls. Diabetes
was accompanied by significantly decreased BW in all the
experimental groups (Table 1). All male groups presented
higher BW and KW than females. Interestingly, a sig-
nificant degree of renal hypertrophy in terms of KW/BW
was observed in diabetic WT males, but not in diabetic WT
females. In these WT groups, HW was also significantly
higher in males than in females.

ANGII induced cardiac hypertrophy as judged by the
increased HW/BW ratio in all groups. In males, this
increase was significant in control groups, regardless of the
genotype. In females, however, significant ANGII-related
cardiac hypertrophy was observed only in ACE2KO mice
(Table 1). Ace2 deletion induced a decrease in BW, which
was significant only in males. In contrast, ACE2 deficiency

significantly accentuated renal hypertrophy only in diabetic
females (Table 1).

ANGII increased SBP and DBP in all groups (Fig. 2a, b).
In females, the ANGII-associated increase in BP was sig-
nificantly accentuated by diabetes and ACE2 deficiency.
Control and diabetic ACE2KO females presented
significantly higher SBP and DBP than the WT. In contrast,
ANGII-induced hypertension to a similar extent in all male
groups (Fig. 2a, b). Heart rate was significantly decreased
by diabetes in ACE2KO females. In males, decreased heart
rate was also promoted by ANGII in the context of diabetes
or ACE2 deficiency (Fig. 2c).

ANGII induced an increase in UAE in all non-diabetic
groups, and accentuated albuminuria in all diabetic groups
(Fig. 2d). In females, ACE2 deficiency significantly
accentuated the ANGII-induced increase in UAE. In males,
the proalbuminuric effect of ANGII was comparable
between WT and ACE2KO. After 12 weeks of diabetes WT
males showed significantly higher UAE than females, and
ANGII infusion accentuated these effects. Interestingly,
these differences disappeared in the ACE2KO groups.
ANGII-induced albuminuria was accompanied by
decreased GFR in all groups, except for diabetic males
(Fig. 2e). In this regard, diabetic males showed higher GFR
values than diabetic females, and this difference was sig-
nificant in the setting of ANGII infusion, indicating a higher
degree of hyperfiltration in the diabetic male kidney under
exposure to ANGII (Fig. 2e).

ANGII-induced histological renal alterations were
accentuated by the loss of ACE2 and diabetes in a
sex-dependent manner

In WT females, ANGII and diabetes significantly decreased
percentage of podocytes. In WT males, diabetes only
caused a slight diminution in the percentage. ANGII
decreased the percentage of podocytes in all male groups,
but this diminution was only significant in the setting of
diabetes and ACE2 deficiency (Fig. 3a, b). Surprisingly, in
ACE2KO females, ANGII significantly increased this per-
centage (Fig.3a, b).

ANGII and diabetes increased GTA (Fig. 3c, e). In
females, ANGII infusion, diabetes, and ACE2 deficiency
were associated to higher GTA, especially when these
pathological settings were combined in diabetic and
ANGII-infused ACE2KO females. In males, increased GTA
by diabetes was observed in ANGII-infused, but not in
SHAM-operated mice. ANGII significantly increased GTA
in diabetic ACE2KO but not WT males. In concordance
with GTA, augmented MA due to diabetes was only sig-
nificant in ANGII-infused males, and ANGII significantly
augmented the area of the mesangium in diabetic ACE2KO,
but not WT males (Fig. 3d, e).
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ANGII-induced fibrosis and inflammation was
enhanced by loss of ACE2 and diabetes in a sex-
dependent manner

ANGII showed a sex-specific profibrotic and proinflammatory
effect in our model. In females, ANGII significantly accen-
tuated the increase in cortical Tgfb1 gene expression associated
to diabetes in WT, but not ACE2KO mice (Fig. 4a). In males,
ANGII up-regulated Tgfb1 in the WT groups, and significantly
downregulated Tgfb1 and Col1α2 in the diabetic ACE2KO
(Fig. 4a, b). ANGII stimulated the gene expression of cortical
Mcp1 in non-diabetic mice, and enhanced its increase in the
diabetic kidney (Fig. 4c). At the protein level, diabetes
increased tubulointerstitial collagen deposition in all groups
(Fig. 4d, g). Male sex was associated to greater accumula-
tion of periglomerular and intraglomerular collagen fibers
(Fig. 4e, f). In females, ANGII-infused groups showed a
trend towards higher periglomerular and intraglomerular
collagen levels, especially in the setting diabetes and ACE2
deficiency (Fig. 4e, f).

Loss of ACE2 accentuated ANGII-mediated
downregulation of ACE in diabetic male mice

Aiming to evaluate the crosstalk between ACE2 and
ACE in our animal model, we next examined the sex

differences in the modulation of ACE by ANGII and
diabetes, and how these differences were affected by the
absence of ACE2.

We found that ANGII significantly modulated circulating
ACE activity in males, but not females (Fig. 5a). Indeed, a
significant decrease in serum ACE was observed when
ANGII was administered to diabetic male mice. Impor-
tantly, this ANGII-induced reduction in circulating ACE
was also observed in the setting of ACE2 deficiency, and
was more pronounced in diabetic ACE2KO males, which
showed the lowest values across all male groups (Fig. 5a).
In females, diabetes and Ace2 deletion significantly
increased circulating ACE, but these changes were not
altered by the infusion of ANGII.

In the kidney cortex, lower ACE activity and
protein expression was observed in the majority of
experimental groups receiving ANGII, as compared to
their SHAM groups(Fig. 5b, c). In particular, a more
pronounced and significant decrease in renal ACE was
observed in ACE2KO-DB males, which also
presented significant lower values of ACE activity as
compared to the female groups (Fig. 5b). This observation
was reinforced by the immunostaining pattern for
renal ACE, as positive ACE staining in the tubular brush
border was almost absent in ACE2KO-DB-ANGII males
(Fig. 5c).

Table 1 Physiologic parameters at the end of the study

Physiologic parameters after 12 weeks of type 1 diabetes and 28 days of ANGII infusion

Study group BG (mg/dL) BW (g) KW (g) HW (g) KW/BW (%) HW/BW (%)

F-WT-CONT-SHAM 172.00 ± 7.61 25.87 ± 0.66 0.27 ± 0.01 0.13 ± 0.01 1.04 ± 0.05 0.49 ± 0.03

F-WT-CONT-ANGII 175.17 ± 7.05 25.13 ± 0.92 0.24 ± 0.01$ 0.13 ± 0.01 0.95 ± 0.03 0.54 ± 0.02

F-WT-DB-SHAM 306.55 ± 31.74* 21.24 ± 0.43* 0.24 ± 0.02 0.10 ± 0.01* 1.13 ± 0.08 0.46 ± 0.02

F-WT-DB-ANGII 389.36 ± 44.05* 20.83 ± 0.27* 0.23 ± 0.01 0.10 ± 0.01* 1.09 ± 0.07 0.49 ± 0.03

F-ACE2KO-CONT-SHAM 177.00 ± 11.77 24.40 ± 0.57 0.23 ± 0.01 0.12 ± 0.01 0.93 ± 0.06 0.50 ± 0.02

F-ACE2KO-CONT-ANGII 157.30 ± 8.07 23.28 ± 0.46 0.23 ± 0.01 0.15 ± 0.01$ 1.00 ± 0.04 0.65 ± 0.03$†

F-ACE2KO-DB-SHAM 354.30 ± 46.83* 20.24 ± 0.65* 0.27 ± 0.02 0.10 ± 0.01* 1.34 ± 0.10*† 0.50 ± 0.03

F-ACE2KO-DB-ANGII 436.78 ± 51.50* 19.82 ± 0.77* 0.26 ± 0.01 0.12 ± 0.01*† 1.31 ± 0.04*† 0.60 ± 0.02$†

M-WT-CONT-SHAM 199.67 ± 9.93 33.33 ± 1.02# 0.36 ± 0.02# 0.17 ± 0.01# 1.09 ± 0.05 0.50 ± 0.04

M-WT-CONT-ANGII 158.11 ± 7.97$ 31.79 ± 1.06# 0.35 ± 0.02# 0.19 ± 0.01# 1.10 ± 0.07 0.61 ± 0.02$

M-WT-DB-SHAM 492.13 ± 41.44*# 27.62 ± 0.66*# 0.35 ± 0.02# 0.13 ± 0.01*# 1.27 ± 0.07* 0.47 ± 0.04

M-WT-DB-ANGII 554.33 ± 16.76*# 26.17 ± 0.78*# 0.34 ± 0.03# 0.14 ± 0.01*# 1.31 ± 0.12# 0.55 ± 0.04

M-ACE2KO-CONT-SHAM 175.50 ± 9.72 28.06 ± 0.62†# 0.28 ± 0.02†# 0.13 ± 0.01† 1.00 ± 0.07 0.45 ± 0.04

M-ACE2KO-CONT-ANGII 165.75 ± 11.19 27.79 ± 0.58†# 0.31 ± 0.02†# 0.17 ± 0.01$† 1.10 ± 0.04 0.60 ± 0.03$

M-ACE2KO-DB-SHAM 494.25 ± 48.16* 24.72 ± 0.99*†# 0.32 ± 0.02 0.12 ± 0.01# 1.40 ± 0.10* 0.50 ± 0.02

M-ACE2KO-DB-ANGII 570.13 ± 20.21* 23.10 ± 0.83*†# 0.30 ± 0.01# 0.13 ± 0.00* 1.29 ± 0.04* 0.57 ± 0.02

BG blood glucose, BW body weight, KW kidney weight, HW heart weight and the corresponding ratios KW/BW and HW/BW after 12 weeks of
T1DM, and 28 days of ANGII infusion, F, female, M male, CONT, control, DB diabetic, WT wild type, ACE2KO ACE2 knockout, ANGII
angiotensin II-infused. Values are expressed as means ± SEM (n= 8–12 per group)
$P< 0.05 vs. SHAM; *P< 0.05 vs. CONT; †P< 0.05 vs. WT; #P< 0.05 vs. female
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ANGII-mediated negative feedback regulation of
the AGT–renin–ACE axis was enhanced by loss of
ACE2 and diabetes in a sex-dependent manner

In line with protein and activity data, ANGII infusion was
associated to lower Ace expression (Fig. 6a). Within the
diabetic groups, ANGII-mediated Ace downregulation was
more pronounced in ACE2KO males, which presented the
lowest expression values among all groups (Fig. 6a).
Similarly, ANGII significantly decreased Ren expression in
all groups. ACE2KO-CONT-SHAM females presented
significantly lower Ren than WT-CONT-SHAM.
In males, diabetes and ACE2 deficiency accentuated ANGII
effects on diminishing Ren. Indeed, ACE2KO-DB-ANGII
males also had the lowest Ren expression among all groups
(Fig. 6b).

ANGII infusion was generally associated to an increase
in renal Agt, which was accentuated by diabetes and ACE2
deficiency in a sex-dependent manner. In females, combi-
nation of these factors was accompanied by higher Agt

expression. In males, ANGII significantly augmented Agt in
ACE2KO-CONT mice, and accentuated the diabetes-
induced increase in Agt in the ACE2KO-DB (Fig. 6c).
Interestingly, females showed higher Agt and Ren expres-
sion than males.

Discussion

Male sex increases the incidence and progression of chronic
kidney disease [40]. Previous findings suggest that in dia-
betes, sex differences are related to sex differences in RAS
[18, 41]. Within this system, imbalanced levels of ACE and
ACE2 are related to the progression of hypertensive and
diabetic kidney disease [18, 36, 37, 42, 43]. In this work, we
demonstrate that in the absence of genetic ACE2 deficiency
(WT groups) diabetic male mice exhibited worsened kidney
disease progression as compared to diabetic females. In
particular, diabetic males showed accentuated glomerular
lesions in terms of hyperfiltration, albuminuria, glomerular
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hypertrophy, and mesangial expansion. In concordance,
Costa et al. [32] reported a greater UAE increase in STZ
diabetic male rats compared with females. In addition, the
presence of hyperfiltration, glomerular hypertrophy, and
mesangial matrix expansion has been consistently reported
when studying STZ and Akita mice with T1DM [19, 20,
44–48]. These observations strengthen the idea that male
sex contributes to more severe alterations on glomerular
function and morphology in T1DM.

With our findings, we also demonstrate sex differences in
the activation of compensatory mechanisms of RAS,
namely the downregulation of the ACE axis, in the sex-
specific progression of DN. In diabetic males, ACE2 dele-
tion was accompanied by a pronounced decrease in the
levels and activity of ACE, which was not observed in
females. The decrease in renal ACE in the diabetic kidney
has been described previously [18, 38, 40, 43]. We now
increased the current knowledge by showing that the

activation of this compensatory mechanism was strongly
influenced by sex. However, some of the differences
observed might be related to higher glycemia, which was
generally seen in male diabetic groups.

ANGII is the common denominator between ACE-
and ACE2-catalyzed reactions. In line with other authors
[34, 49], we previously showed a more accentuated
decrease in renal ACE when ANGII accumulation was
favored in the absence of ACE2. In addition, the reduction
in renal ACE in ACE2-deficient mice was prevented by
androgen reduction, suggesting that these ANGII-mediated
changes were favored by male sex [18]. In front of these
findings, we next hypothesized that direct infusion of
ANGII would induce the downregulation of ACE in the
male diabetic kidney, and that this effect would be
accentuated by male sex and ACE2 deficiency.

ANGII play a crucial role on hypertension and kidney
disease by altering renal hemodynamics and promoting

0

10

20

30

40

50

%
 W

T-
1 

Po
si

tiv
e 

ce
lls

 

SHAM

ANGII

0

300

600

900

1200

1500

M
A

 (µ
m

) 

SHAM

ANGII

0

900

1800

2700

3600

4500

G
TA

 (µ
m

) 

SHAM

ANGII

E

SH
A

M
A

N
G

II
SH

A
M

A
N

G
II

WT-CONT WT-DB ACE2KO-CONT ACE2KO-DB

20µm

FEMALE

MALE

B

SH
A

M
A

N
G

II
SH

A
M

A
N

G
II

WT-CONT WT-DB ACE2KO-CONT ACE2KO-DB

FEMALE

MALE

C

D

A
FEMALE MALE

*
$

#

*$

$†
† * $# #

#

$  
$*  

*  †
FEMALE MALE

$*  
*#

# †
FEMALE MALE

20µm

Fig. 3 Influence of ANGII infusion, diabetes, Ace2 deletion, and sex
on podocyte loss and glomerular structural alterations. Podocyte
number is represented as the % of brown positive cells after WT-1
immunostaining (a). Representative photomicrographs depicting glo-
merular WT-1 staining from all the experimental groups are shown in
(b). Sex differences on the effect of Ace2 deletion on glomerular tuft
area (GTA, c) and mesangial area (MA, d) were also studied after
12 weeks of diabetes and 28 days of ANGII infusion. Panel e shows

representative photomicrographs depicting glomerular morphometric
changes in PAS-stained sections from all the experimental groups.
Scale bar= 20 μm. Original magnification, ×40. For these experi-
ments, 6 to 10 animals were analyzed in each group. Data are
expressed as mean ± SEM. $P < 0.05 vs. SHAM, *P < 0.05 vs. non-
diabetic controls (CONT), †P < 0.05 vs. WT, #P < 0.05 vs. females.
CONT control, DB diabetic, WT wild type, ACE2KO Ace2 knockout,
ANGII angiotensin II, WT-1 Wilms tumor 1

Sex dimorphism in ANGII-mediated crosstalk between ACE2 and ACE in diabetic nephropathy 1243



renal fibrosis and inflammation, among other lesions [50,
51]. These effects are more evident in diabetes, since glo-
merular and tubular RAS activation and ANGII production
are accentuated by hyperglycemia [52]. We now demon-
strate that (1) Ace2 deletion accentuates diabetes- and
ANGII-induced alterations in a sex-dependent manner, and
(2) sex-specific ANGII actions are related to a different
imbalance of RAS involving a regulation of the negative
feedback loop of this system, especially in the male diabetic
kidney.

The combined effect of ANGII and ACE2 deficiency
on BP, cardiac function and vascular injury has been
previously studied; however, these studies were per-
formed exclusively in male mice [53, 54]. We now

studied both sexes in the context of ANGII infusion,
diabetes, and ACE2 deficiency, and focused our approach
on kidney function and histopathology. It is accepted that
ANGII promotes cardiac hypertrophy, hypertension,
albuminuria, GFR decrease, and tubular injury [55–59].
Here we report a sex dimorphism on these effects. In our
non-diabetic WT mice, ANGII promoted hypertension
and cardiac hypertrophy in males, which also showed a
greater decrease in GFR as compared to females. Growing
evidence supports deleterious effects of male sex and
female protection against ANGII-related hypertension and
deterioration of hemodynamics. In male and ovar-
iectomized female rats, enhanced hypertension and GFR
decrease in response to ANGII was observed [60, 61].
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Male sex was also associated to increased responses of
DBP and mean BP in humans after acute ANGII admin-
istration [62]. Moreover, altering ANGII effects during
renal development leads to a greater BP increase and GFR
decrease in males than in females [63]. In our diabetic
groups, administration of ANGII was associated to a more
marked albuminuria, glomerular hypertrophy, and
mesangial expansion in males than in females. In line with
our findings, male hypertensive and STZ diabetic mRen2.
Lewis rats showed higher levels of albuminuria than
females [64].

We found that Ace2 deletion exacerbated ANGII-
induced hypertension and renal alterations in a sex-
dependent fashion. Whereas ACE2 deficiency accentuated
ANGII hypertension and albuminuria in diabetic females,
loss of ACE2 in diabetic males accentuated ANGII-induced
glomerular lesions, namely glomerular hypertrophy,
mesangial expansion, and podocyte loss. In concordance,

previous studies showed that ACE2 administration and
podocyte-specific overexpression attenuated these altera-
tions in diabetic males [19, 20]. Our results suggest a sex-
specific renoprotective role of ACE2 against ANGII-
mediated injury.

An important finding of this study is that sex modulates
the effect of ANGII and diabetes on RAS. We also
demonstrate a sex-specific modulation of the negative
feedback loop of RAS in the ANGII-infused, diabetic and
ACE2-deficient kidney (Fig. 7). Importantly, down-
regulation of circulating and renal ACE by infusion of
exogenous ANGII was more evident in males, especially in
the setting of diabetes and ACE2 deficiency. Indeed, ANGII
induced a more marked decrease in renal Ren and Ace
expression in ACE2KO diabetic males than females. In
agreement, hypertensive mRen2.Lewis males showed a
greater decrease in renal renin than females, compared with
normotensive rats [42].
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Our data reinforce the idea of a crosstalk between ACE2
and ANGII-mediated downregulation of ACE. We surmise
that ACE downregulation in hypertensive and diabetic
ACE2KO males may be an attempt to reduce endogenous
ANGII production and counterbalance the harmful effects
of exogenous ANGII in the absence of ACE2. In turn, in
diabetic and ANGII-infused ACE2KO females, higher renal
Ren and Agt levels indicate a different activation of RAS.
Together with higher renal ACE at the gene, protein, and
activity level, RAS modulation in diabetic, ANGII-infused
and ACE2-deficient females suggests a shift of the cascade
towards the classic AGT/renin/ACE/ANGII axis. One sur-
mises that this shift would result in enhanced production of
endogenous ANGII, and probably explain the worsened
hypertension and hemodynamic alterations in diabetic
ACE2KO females (Fig. 7). In concordance, STZ-diabetic

and hypertensive female rats showed increased renal AGT
as compared to males [33]. In this sense, augmented AGT
led to increased BP in other hypertensive models [65, 66]. It
is known that increased BP synergizes with higher renal
ANGII to stimulate AGT production and exert greater renal
injury [65]. We speculate that ANGII-infused ACE2KO
diabetic females entered the vicious circle of increasing
AGT cleavage to ANGII, then increasing SBP and AGT
levels, in which AGT stimulated hypertension, and vice
versa. With our findings, we demonstrate a link between sex
and the crosstalk of RAS components, hypertension and
glomerular injury in T1DM, and confirm that ANGII plays
a key role on this sex dimorphism. A better understanding
of these connections will help to design more specific
therapies to prevent DN through RAS modulation.

Regarding renal fibrosis, as expected ANGII adminis-
tration to WT and diabetic groups stimulated cortical Tgfb1
levels. In agreement, ANGII up-regulated TGF-β1 in dif-
ferent cell lines such as smooth muscle and renal cells [7].
When ANGII was given to male rats under high-salt diet,
fibrosis was exacerbated in the glomeruli and the inter-
stitium [67]. A different pattern was observed in our
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diabetic ACE2KO groups, where ANGII reduced Tgfb1 and
Col1α2, especially in males. We speculate that ACE2
deficiency promotes a series of events in the kidney,
including a deregulation of RAS involving a reduction in
renin and ACE expression, as an attempt to compensate
ANGII-mediated fibrosis [68].The activation of the immune
system also contributes to the pathogenesis of hypertension
and DN. This process involves many cytokines such as
MCP1 [69]. We showed a proinflammatory effect of
ANGII, as renal Mcp1 was increased in infused mice.
Interestingly, ACE2KO-DB+ANGII males showed sig-
nificantly higher Mcp1 levels than the SHAM group, indi-
cating a more severe inflammation that may be ascribed to
the greater alteration of RAS. It is known that altered levels
of ANG peptides lead to inflammation [70, 71]. We now
report that this inflammation is sex-dependent.

With this work we demonstrate that the direct effects of
ANGII on hypertension and kidney disease in vivo are
accentuated by ACE2 deficiency and diabetes, and strongly
influenced by sex. In non-diabetic WT mice, ANGII pro-
moted hypertension and cardiac hypertrophy in males,
which also showed a greater decrease in GFR than females.
In diabetic WT animals, ANGII administration was asso-
ciated to a more marked albuminuria, glomerular hyper-
trophy, and mesangial expansion in males than in females
(Fig. 7). ACE2 deficiency accentuated ANGII-induced
hypertension and albuminuria in diabetic females, whereas
in males accentuated glomerular lesions, namely glomerular
hypertrophy, mesangial expansion, and podocyte loss. At
the molecular level, ANGII induced a greater down-
regulation of ACE in ACE2KO diabetic males, indicating a
sex-specific ANGII-mediated crosstalk between ACE2 and
ACE (Fig. 7). Our results thus indicate that sex differences
in ANGII-related actions in hypertension and DN are
ascribed, at least partially, to a sex-specific imbalance of
RAS and a differential activation of its ACE2-related and
ACE-related compensatory mechanisms. These mechan-
isms would include the negative feedback regulation of
renal renin as an attempt to prevent the development of
fibrosis and apoptosis under exposure to hyperglycemia
and/or ANGII. Future studies targeting the ANGII axis in
hypertension and DN according to sex differences will be of
great interest, and potentially exert an impact in the
nephrology field with the development of sex-directed
therapies.
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