Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary bridges: how factors present in amniotic fluid and human milk help mature the gut

Abstract

Necrotizing enterocolitis (NEC) continues to be a leading cause of morbidity and mortality in preterm infants. As modern medicine significantly improves the survival of extremely premature infants, the persistence of NEC underscores our limited understanding of its pathogenesis. Due to early delivery, a preterm infant’s exposure to amniotic fluid (AF) is abruptly truncated. Replete with bioactive molecules, AF plays an important role in fetal intestinal maturation and preparation for contact with the environment, thus its absence during development of the intestine may contribute to increased susceptibility to NEC. Human milk (HM), particularly during the initial phases of lactation, is a cornerstone of neonatal intestinal defense. The concentrations and activities of several bioactive factors in HM parallel those of AF, suggesting continuity of protection. In this review, we discuss the predominant overlapping bioactive components of HM and AF, with an emphasis on those associated with intestinal growth or reduction of NEC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the role of amniotic fluid (AF) in fetal gut development.

Similar content being viewed by others

References

  1. Hackam D, Caplan M. Necrotizing enterocolitis: Pathophysiology from a historical context. Semin Pediatr Surg. 2018;27:11–8.

    Article  PubMed  Google Scholar 

  2. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL, Mai V, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome. 2017;5:31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Battersby AJ, Gibbons DL. The gut mucosal immune system in the neonatal period. Pediatr Allergy Immunol. 2013;24:414–21.

    Article  PubMed  Google Scholar 

  5. Lueschow SR, McElroy SJ. The Paneth Cell: The Curator and Defender of the Immature Small Intestine. Front Immunol. 2020;11:587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaaban H, Patel MM, Burge K, Eckert JV, Lupu C, Keshari RS, et al. Early Antibiotic Exposure Alters Intestinal Development and Increases Susceptibility to Necrotizing Enterocolitis: A Mechanistic Study. Microorganisms. 2022;10:519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nanthakumar N, Meng D, Goldstein AM, Zhu W, Lu L, Uauy R, et al. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PloS One. 2011;6:e17776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neal MD, Sodhi CP, Dyer M, Craig BT, Good M, Jia H, et al. A critical role for TLR4 induction of autophagy in the regulation of enterocyte migration and the pathogenesis of necrotizing enterocolitis. J Immunol. 2013;190:3541–51.

    Article  CAS  PubMed  Google Scholar 

  9. Lu P, Sodhi CP, Hackam DJ. Toll-like receptor regulation of intestinal development and inflammation in the pathogenesis of necrotizing enterocolitis. Pathophysiology. 2014;21:81–93.

    Article  CAS  PubMed  Google Scholar 

  10. Dasgupta S, Arya S, Choudhary S, Jain SK. Amniotic fluid: Source of trophic factors for the developing intestine. World J Gastrointest Pathophysiol. 2016;7:38–47.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hirai C, Ichiba H, Saito M, Shintaku H, Yamano T, Kusuda S. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. J Pediatr Gastroenterol Nutr. 2002;34:524–8.

    PubMed  Google Scholar 

  12. Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, et al. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front Immunol. 2021;12:604080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020;12:1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo J, Tan M, Zhu J, Tian Y, Liu H, Luo F, et al. Proteomic Analysis of Human Milk Reveals Nutritional and Immune Benefits in the Colostrum from Mothers with COVID-19. Nutrients. 2022;14:2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sari RN, Pan J, Zhang W, Li Y, Zhu H, Pang X, et al. Comparative Proteomics of Human Milk From Eight Cities in China During Six Months of Lactation in the Chinese Human Milk Project Study. Front Nutr. 2021;8:682429.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Caplan MS, Underwood MA, Modi N, Patel R, Gordon PV, Sylvester KG, et al. Necrotizing Enterocolitis: Using Regulatory Science and Drug Development to Improve Outcomes. J Pediatrics. 2019;212:208–15.e1.

    Article  Google Scholar 

  17. Kobata R, Tsukahara H, Ohshima Y, Ohta N, Tokuriki S, Tamura S, et al. High levels of growth factors in human breast milk. Early Hum Dev. 2008;84:67–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tang X, Liu H, Yang S, Li Z, Zhong J, Fang R. Epidermal Growth Factor and Intestinal Barrier Function. Mediators Inflamm. 2016;2016:1927348.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Clark JA, Lane RH, Maclennan NK, Holubec H, Dvorakova K, Halpern MD, et al. Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2005;288:G755–62.

    Article  CAS  PubMed  Google Scholar 

  20. Nolan LS, Parks OB, Good M. A Review of the Immunomodulating Components of Maternal Breast Milk and Protection Against Necrotizing Enterocolitis. Nutrients. 2019;12:14.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Warner BB, Ryan AL, Seeger K, Leonard AC, Erwin CR, Warner BW. Ontogeny of salivary epidermal growth factor and necrotizing enterocolitis. J Pediatrics. 2007;150:358–63.

    Article  CAS  Google Scholar 

  22. York DJ, Smazal AL, Robinson DT, De Plaen IG. Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients. 2021;13:3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Löfqvist C, van Marter L, et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr. 2016;105:576–86.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giapros VI, Schiza V, Challa AS, Pantou C, Theocharis PD, Andronikou SK. Serum insulin-like growth factor I (IGF-I), IGF-binding proteins-1 and -3, and postnatal growth of late preterm infants. Horm Metab Res. 2012;44:845–50.

    Article  CAS  PubMed  Google Scholar 

  25. Milsom SR, Blum WF, Gunn AJ. Temporal changes in insulin-like growth factors I and II and in insulin-like growth factor binding proteins 1, 2, and 3 in human milk. Horm Res. 2008;69:307–11.

    CAS  PubMed  Google Scholar 

  26. Elmlinger MW, Hochhaus F, Loui A, Frommer KW, Obladen M, Ranke MB. Insulin-like growth factors and binding proteins in early milk from mothers of preterm and term infants. Horm Res. 2007;68:124–31.

    CAS  PubMed  Google Scholar 

  27. Baregamian N, Song J, Jeschke MG, Evers BM, Chung DH. IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis. J Surg Res. 2006;136:31–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian F, Liu GR, Li N, Yuan G. Insulin-like growth factor I reduces the occurrence of necrotizing enterocolitis by reducing inflammatory response and protecting intestinal mucosal barrier in neonatal rats model. Eur Rev Med Pharm Sci. 2017;21:4711–9.

    CAS  Google Scholar 

  29. Ozen S, Akisu M, Baka M, Yalaz M, Sozmen EY, Berdeli A, et al. Insulin-like growth factor attenuates apoptosis and mucosal damage in hypoxia/reoxygenation-induced intestinal injury. Biol Neonate 2005;87:91–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ley D, Hallberg B, Hansen-Pupp I, Dani C, Ramenghi LA, Marlow N, et al. rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J Pediatr. 2019;206:56–65.e8.

    Article  CAS  PubMed  Google Scholar 

  31. Loui A, Eilers E, Strauss E, Pohl-Schickinger A, Obladen M, Koehne P. Vascular Endothelial Growth Factor (VEGF) and soluble VEGF receptor 1 (sFlt-1) levels in early and mature human milk from mothers of preterm versus term infants. J Hum Lact. 2012;28:522–8.

    Article  PubMed  Google Scholar 

  32. Gregory KE, Walker WA. Immunologic Factors in Human Milk and Disease Prevention in the Preterm Infant. Curr Pediatr Rep. 2013;1:222–8.

  33. Yang HB, Kim HY, Kim SH, Kim SY. Suppressive role of vascular endothelial growth factor on intestinal apoptosis in induced necrotizing enterocolitis in rats. Ann Surg Treat Res. 2023;105:157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seikku L, Stefanovic V, Rahkonen P, Teramo K, Paavonen J, Tikkanen M, et al. Amniotic fluid and umbilical cord serum erythropoietin in term and prolonged pregnancies. Eur J Obstet Gynecol Reprod Biol. 2019;233:1–5.

    Article  CAS  PubMed  Google Scholar 

  35. Juul SE, Joyce AE, Zhao Y, Ledbetter DJ. Why is erythropoietin present in human milk? Studies of erythropoietin receptors on enterocytes of human and rat neonates. Pediatr Res. 1999;46:263–8.

    Article  CAS  PubMed  Google Scholar 

  36. Juul SE, Ledbetter DJ, Joyce AE, Dame C, Christensen RD, Zhao Y, et al. Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut. 2001;49:182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu Y, Shiou SR, Guo Y, Lu L, Westerhoff M, Sun J, et al. Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One. 2013;8:e69620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hosseini M, Azampour H, Raeisi S, Behtari M, Valizadeh H, Saboohi R. The effects of enteral artificial amniotic fluid-containing erythropoietin on short term outcomes of preterm infants. Turk J Pediatr. 2019;61:392–8.

    Article  PubMed  Google Scholar 

  39. Wang Y, Song J, Sun H, Xu F, Li K, Nie C, et al. Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial. J Transl Med. 2020;18:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ananthan A, Balasubramanian H, Mohan D, Rao S, Patole S. Early erythropoietin for preventing necrotizing enterocolitis in preterm neonates - an updated meta-analysis. Eur J Pediatr. 2022;181:1821–33.

    Article  CAS  PubMed  Google Scholar 

  41. Juul SE, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T, et al. A Randomized Trial of Erythropoietin for Neuroprotection in Preterm Infants. N. Engl J Med. 2020;382:233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raynor BD, Clark P, Duff P. Granulocyte colony-stimulating factor in amniotic fluid. Infect Dis Obstet Gynecol. 1995;3:140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calhoun DA, Lunoe M, Du Y, Christensen RD. Granulocyte colony-stimulating factor is present in human milk and its receptor is present in human fetal intestine. Pediatrics. 2000;105:e7.

    Article  CAS  PubMed  Google Scholar 

  44. Calhoun DA, Lunøe M, Du Y, Staba SL, Christensen RD. Concentrations of granulocyte colony-stimulating factor in human milk after in vitro simulations of digestion. Pediatr Res. 1999;46:767–71.

    Article  CAS  PubMed  Google Scholar 

  45. Gersting JA, Christensen RD, Calhoun DA. Effects of enterally administering granulocyte colony-stimulating factor to suckling mice. Pediatr Res. 2004;55:802–6.

    Article  CAS  PubMed  Google Scholar 

  46. Canpolat FE, Yurdakök M, Ozsoy S, Haziroğlu R, Korkmaz A. Protective effects of recombinant human granulocyte colony stimulating factor in a rat model of necrotizing enterocolitis. Pediatr Surg Int. 2006;22:719–23.

    Article  PubMed  Google Scholar 

  47. Canpolat FE, Yurdakök M, Korkmaz A, Yiğit S, Tekinalp G. Enteral granulocyte colony-stimulating factor for the treatment of mild (stage I) necrotizing enterocolitis: a placebo-controlled pilot study. J Pediatr Surg. 2006;41:1134–8.

    Article  PubMed  Google Scholar 

  48. El-Ganzoury MM, Awad HA, El-Farrash RA, El-Gammasy TM, Ismail EA, Mohamed HE, et al. Enteral granulocyte-colony stimulating factor and erythropoietin early in life improves feeding tolerance in preterm infants: a randomized controlled trial. J Pediatr. 2014;165:1140–5.e1.

    Article  CAS  PubMed  Google Scholar 

  49. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993;90:770–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frost BL, Jilling T, Lapin B, Maheshwari A, Caplan MS. Maternal breast milk transforming growth factor-beta and feeding intolerance in preterm infants. Pediatr Res. 2014;76:386–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morita Y, Campos-Alberto E, Yamaide F, Nakano T, Ohnisi H, Kawamoto M, et al. TGF-β Concentration in Breast Milk is Associated With the Development of Eczema in Infants. Front Pediatrics. 2018;6:162.

    Article  Google Scholar 

  52. Penttila IA, van Spriel AB, Zhang MF, Xian CJ, Steeb CB, Cummins AG, et al. Transforming growth factor-beta levels in maternal milk and expression in postnatal rat duodenum and ileum. Pediatr Res. 1998;44:524–31.

    Article  CAS  PubMed  Google Scholar 

  53. Hawkes JS, Bryan DL, James MJ, Gibson RA. Cytokines (IL-1beta, IL-6, TNF-alpha, TGF-beta1, and TGF-beta2) and prostaglandin E2 in human milk during the first three months postpartum. Pediatr Res. 1999;46:194–9.

    Article  CAS  PubMed  Google Scholar 

  54. Maheshwari A, Kelly DR, Nicola T, Ambalavanan N, Jain SK, Murphy-Ullrich J, et al. TGF-beta2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology. 2011;140:242–53.

    Article  CAS  PubMed  Google Scholar 

  55. Maheshwari A, Lu W, Lacson A, Barleycorn AA, Nolan S, Christensen RD, et al. Effects of interleukin-8 on the developing human intestine. Cytokine. 2002;20:256–67.

    Article  CAS  PubMed  Google Scholar 

  56. Polat A, Tunc T, Erdem G, Yerebasmaz N, Tas A, Beken S, et al. Interleukin-8 and Its Receptors in Human Milk from Mothers of Full-Term and Premature Infants. Breastfeed Med. 2016;11:247–51.

    Article  PubMed  Google Scholar 

  57. Cederqvist LL, Ewool LC, Bonsnes RW, Litwin SD. Detectability and pattern of immunoglobulins in normal amniotic fluid throughout gestation. Am J Obstet Gynecol. 1978;130:220–4.

    Article  CAS  PubMed  Google Scholar 

  58. Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell. 2021;184:1486–99.

    Article  CAS  PubMed  Google Scholar 

  59. Rio-Aige K, Azagra-Boronat I, Castell M, Selma-Royo M, Collado MC, Rodríguez-Lagunas MJ, et al. The Breast Milk Immunoglobulinome. Nutrients. 2021;13:1810.

  60. Mehta R, Petrova A. Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J Perinatol. 2011;31:58–62.

    Article  CAS  PubMed  Google Scholar 

  61. Donald K, Petersen C, Turvey SE, Finlay BB, Azad MB. Secretory IgA: Linking microbes, maternal health, and infant health through human milk. Cell Host Microbe. 2022;30:650–9.

    Article  CAS  PubMed  Google Scholar 

  62. Gopalakrishna KP, Macadangdang BR, Rogers MB, Tometich JT, Firek BA, Baker R, et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat Med. 2019;25:1110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson-Hence CB, Gopalakrishna KP, Bodkin D, Coffey KE, Burr AHP, Rahman S, et al. Stability and heterogeneity in the anti-microbiota reactivity of human milk-derived Immunoglobulin A. J Exp Med. 2023;220:e20220839.

  64. Rubaltelli FF, Benini F, Sala M. Prevention of Necrotizing Enterocolitis in Neonates at Risk by Oral Administration of Monomeric IgG. Dev Pharmacol Therapeutics. 2017;17:138–43.

    Article  Google Scholar 

  65. Foster JP, Seth R, Cole MJ. Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth weight neonates. Cochrane Database Syst Rev. 2016;4:CD001816.

    PubMed  Google Scholar 

  66. Niemelä A, Kulomaa M, Vija P, Tuohimaa P, Saarikoski S. Lactoferrin in human amniotic fluid. Hum Reprod. 1989;4:99–101.

    Article  PubMed  Google Scholar 

  67. Buccigrossi V, de Marco G, Bruzzese E, Ombrato L, Bracale I, Polito G, et al. Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr Res. 2007;61:410–4.

    Article  CAS  PubMed  Google Scholar 

  68. Albenzio M, Santillo A, Stolfi I, Manzoni P, Iliceto A, Rinaldi M, et al. Lactoferrin Levels in Human Milk after Preterm and Term Delivery. Am J Perinatol. 2016;33:1085–9.

    Article  PubMed  Google Scholar 

  69. Mastromarino P, Capobianco D, Campagna G, Laforgia N, Drimaco P, Dileone A, et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals. 2014;27:1077–86.

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Perego M, Xiao Q, He Y, Fu S, He J, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Investig. 2019;129:4261–75.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Reniker LN, Frazer LC, Good M. Key biologically active components of breast milk and their beneficial effects. Semin Pediatr Surg. 2023;32:151306.

    Article  PubMed  PubMed Central  Google Scholar 

  72. ELFIN trial investigators group. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet. 2019;393:423–33.

    Article  Google Scholar 

  73. Jantscher-Krenn E, von Schirnding L, Trötzmüller M, Köfeler H, Kurtovic U, Fluhr H, et al. Human Milk Oligosaccharides Are Present in Amniotic Fluid and Show Specific Patterns Dependent on Gestational Age. Nutrients. 2022;14:2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johnson PH, Watkins WM. Purification of the Lewis blood-group gene associated alpha-3/4-fucosyltransferase from human milk: an enzyme transferring fucose primarily to type 1 and lactose-based oligosaccharide chains. Glycoconj J. 1992;9:241–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bode L. Human Milk Oligosaccharides in the Prevention of Necrotizing Enterocolitis: A Journey From in vitro and in vivo Models to Mother-Infant Cohort Studies. Front Pediatrics. 2018;6:385.

    Article  Google Scholar 

  77. Dahl LB, Dahl IM, Børresen AL. The molecular weight of sodium hyaluronate in amniotic fluid. Biochem Med Metab Biol. 1986;35:219–26.

    Article  CAS  PubMed  Google Scholar 

  78. Riehl TE, Santhanam S, Foster L, Ciorba M, Stenson WF. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice. Am J Physiol Gastrointest Liver Physiol. 2015;309:G874–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burge K, Bergner E, Gunasekaran A, Eckert J, Chaaban H. The Role of Glycosaminoglycans in Protection from Neonatal Necrotizing Enterocolitis: A Narrative Review. Nutrients. 2020;12:546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chaaban H, Burge K, Eckert J, Trammell M, Dyer D, Keshari RS, et al. Acceleration of Small Intestine Development and Remodeling of the Microbiome Following Hyaluronan 35 kDa Treatment in Neonatal Mice. Nutrients. 2021;13:2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hill DR, Rho HK, Kessler SP, Amin R, Homer CR, McDonald C, et al. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J Biol Chem. 2013;288:29090–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gunasekaran A, Eckert J, Burge K, Zheng W, Yu Z, Kessler S, et al. Hyaluronan 35 kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis. Pediatric Res. 2020;87:1177–84.

  83. Burge K, Eckert J, Wilson A, Trammell M, Lueschow SR, McElroy SJ, et al. Hyaluronic Acid 35 kDa Protects against a Hyperosmotic, Formula Feeding Model of Necrotizing Enterocolitis. Nutrients. 2022;14:1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sano M, Nagura H, Ueno S, Nakashima A. Amino Acid Composition of Amniotic Fluid during the Perinatal Period Reflects Mother’s Fat and Carbohydrate Intake. Nutrients. 2021;13:2136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mesavage WC, Suchy SF, Weiner DL, Nance CS, Flannery DB, Wolf B. Amino acids in amniotic fluid in the second trimester of gestation. Pediatr Res. 1985;19:1021–4.

    Article  CAS  PubMed  Google Scholar 

  86. Sami AS, Frazer LC, Miller CM, Singh DK, Clodfelter LG, Orgel KA, et al. The role of human milk nutrients in preventing necrotizing enterocolitis. Front Pediatrics. 2023;11:1188050.

    Article  Google Scholar 

  87. Richir MC, Siroen MP, van Elburg RM, Fetter WP, Quik F, Nijveldt RJ, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr. 2007;97:906–11.

    Article  CAS  PubMed  Google Scholar 

  88. Vuorela P, Helske S, Hornig C, Alitalo K, Weich H, Halmesmäki E. Amniotic fluid-soluble vascular endothelial growth factor receptor-1 in preeclampsia. Obstet Gynecol. 2000;95:353–7.

    CAS  PubMed  Google Scholar 

  89. Ozgurtas T, Aydin I, Turan O, Koc E, Hirfanoglu IM, Acikel CH, et al. Vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-I and platelet-derived growth factor levels in human milk of mothers with term and preterm neonates. Cytokine. 2010;50:192–4.

    Article  CAS  PubMed  Google Scholar 

  90. Hardin J, Kroeker K, Chung B, Gall DG. Effect of proinflammatory interleukins on jejunal nutrient transport. Gut. 2000;47:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Otsuki K, Yoda A, Saito H, Mitsuhashi Y, Toma Y, Shimizu Y, et al. Amniotic fluid lactoferrin in intrauterine infection. Placenta. 1999;20:175–9.

    Article  CAS  PubMed  Google Scholar 

  92. Wise A, Robertson B, Choudhury B, Rautava S, Isolauri E, Salminen S, et al. Infants Are Exposed to Human Milk Oligosaccharides Already in utero. Front Pediatrics. 2018;6:270.

    Article  Google Scholar 

  93. Dahl LB, Kimpton WG, Cahill RN, Brown TJ, Fraser RE. The origin and fate of hyaluronan in amniotic fluid. J Dev Physiol. 1989;12:209–18.

    CAS  PubMed  Google Scholar 

  94. Rogier EW, Frantz AL, Bruno ME, Wedlund L, Cohen DA, Stromberg AJ, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA. 2014;111:3074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gulbiniene V, Balciuniene G, Petroniene J, Viliene R, Dumalakiene I, Pilypiene I, et al. The Significance of Epidermal Growth Factor in Noninvasively Obtained Amniotic Fluid Predicting Respiratory Outcomes of Preterm Neonates. Int J Mol Sci. 2022;23:2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut. 2002;51:748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr Res. 2003;54:15–9.

    Article  CAS  PubMed  Google Scholar 

  98. Wathen NC, Wang HS, Cass PL, Campbell DJ, Chard T. Insulin-like growth factor-1 and insulin-like growth factor binding protein-1 in early human pregnancy. Early Hum Dev. 1992;28:105–10.

    Article  CAS  PubMed  Google Scholar 

  99. Scott GM, Chow SS, Craig ME, Pang CN, Hall B, Wilkins MR, et al. Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid. J Infect Dis. 2012;205:1305–10.

    Article  CAS  PubMed  Google Scholar 

  100. Vuorela P, Andersson S, Carpén O, Ylikorkala O, Halmesmäki E. Unbound vascular endothelial growth factor and its receptors in breast, human milk, and newborn intestine. Am J Clin Nutr. 2000;72:1196–201.

    Article  CAS  PubMed  Google Scholar 

  101. Siafakas CG, Anatolitou F, Fusunyan RD, Walker WA, Sanderson IR. Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr Res. 1999;45:652–7.

    Article  CAS  PubMed  Google Scholar 

  102. Teramo KA, Widness JA. Increased fetal plasma and amniotic fluid erythropoietin concentrations: markers of intrauterine hypoxia. Neonatology. 2009;95:105–16.

    Article  CAS  PubMed  Google Scholar 

  103. Kling PJ, Sullivan TM, Roberts RA, Philipps AF, Koldovský O. Human milk as a potential enteral source of erythropoietin. Pediatr Res. 1998;43:216–21.

    Article  CAS  PubMed  Google Scholar 

  104. Artym J, Zimecki M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines. 2021;9:1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang Z, Jiang R, Chen Q, Wang J, Duan Y, Pang X, et al. Concentration of Lactoferrin in Human Milk and Its Variation during Lactation in Different Chinese Populations. Nutrients. 2018;10:1235.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011;128:e1520–31.

    Article  PubMed  Google Scholar 

  107. Cauchi MN, Lim D. Secretory IgA levels in the amniotic fluid. J Obstet Gynaecol. 1981;1:213–5.

    Article  Google Scholar 

  108. Granger CL, Lamb CA, Embleton ND, Beck LC, Masi AC, Palmer JM, et al. Secretory immunoglobulin A in preterm infants: determination of normal values in breast milk and stool. Pediatr Res. 2022;92:979–86.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Z, Adelman AS, Rai D, Boettcher J, Lőnnerdal B. Amino acid profiles in term and preterm human milk through lactation: a systematic review. Nutrients. 2013;5:4800–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

HC is supported by an NIH NICHD R01HD109784 and R43HD114348. KYB is supported by an NIH NICHD R21HD112659, NIH NIGMS P20GM134973, and Harold Hamm Diabetes Center seed grant. SJM is supported by an NIH NIDDK R01DK125415.

Author information

Authors and Affiliations

Authors

Contributions

HC wrote the manuscript. KYB and SJM edited and prepared the final version of the manuscript.

Corresponding author

Correspondence to Hala Chaaban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaaban, H., Burge, K. & McElroy, S.J. Evolutionary bridges: how factors present in amniotic fluid and human milk help mature the gut. J Perinatol (2024). https://doi.org/10.1038/s41372-024-02026-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-024-02026-x

Search

Quick links