Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Volume development changes in the occipital lobe gyrus assessed by MRI in fetuses with isolated ventriculomegaly correlate with neurological development in infancy and early childhood

Abstract

Objective

This study was to systematically assess the occipital lobe gray and white matter volume of isolated ventriculomegaly (IVM) fetuses with MRI and to follow up the neurodevelopment of participants.

Method

MRI was used to evaluate 37 IVM fetuses and 37 control fetuses. The volume of gray and white matter in each fetal occipital gyrus was manually segmented and compared, and neurodevelopment was followed up and assessed in infancy and early childhood.

Result

Compared with the control group, the volume of gray matter in occipital lobe increased in the IVM group, and the incidence of neurodevelopmental delay increased.

Conclusion

We tested the hypothesis that prenatal diagnosis IVM represents a biological marker for development in fetal occipital lobe. Compared with the control group, the IVM group showed differences in occipital gray matter development and had a higher risk of neurodevelopmental delay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Using different colored labels to represent different regions and distinguish between gray matter and white matter.
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Leitner Y, Goez H, Gull I, Mesterman R, Weiner E, Jaffa A, et al. Antenatal diagnosis of central nervous system anomalies: can we predict prognosis? J Child Neurol. 2004;19:435–8.

    Article  PubMed  Google Scholar 

  2. Pagani G, Thilaganathan B, Prefumo F. Neurodevelopmental outcome in isolated mild fetal ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;44:254–60.

    Article  CAS  PubMed  Google Scholar 

  3. Scelsa B, Rustico M, Righini A, Parazzini C, Balestriero MA, Introvini P, et al. Mild ventriculomegaly from fetal consultation to neurodevelopmental assessment: A single center experience and review of the literature. Eur J Paediatr Neurol. 2018;22:919–28.

    Article  PubMed  Google Scholar 

  4. Cardoza JD, Goldstein RB, Filly RA. Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology. 1988;169:711–4.

    Article  CAS  PubMed  Google Scholar 

  5. Perlman S, Shashar D, Hoffmann C, Yosef OB, Achiron R, Katorza E. Prenatal diagnosis of fetal ventriculomegaly: agreement between fetal brain ultrasonography and MR imaging. AJNR Am J Neuroradiol. 2014;35:1214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kyriakopoulou V, Davidson A, Chew A, Gupta N, Arichi T, Nosarti C, et al. Characterisation of ASD traits among a cohort of children with isolated fetal ventriculomegaly. Nat Commun. 2023;14:1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barzilay E, Bar-Yosef O, Dorembus S, Achiron R, Katorza E. Fetal brain anomalies associated with ventriculomegaly or asymmetry: an MRI-based study. AJNR Am J Neuroradiol. 2017;38:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pisapia JM, Rozycki M, Akbari H, Bakas S, Thawani JP, Moldenhauer JS, et al. Correlations of atrial diameter and frontooccipital horn ratio with ventricle size in fetal ventriculomegaly. J Neurosurg Pediatr. 2017;19:300–6.

    Article  PubMed  Google Scholar 

  9. Mahaney KB, Abdulrauf SI. Anatomic relationship of the optic radiations to the atrium of the lateral ventricle: description of a novel entry point to the trigone. Neurosurgery. 2008;63:195–202.

    PubMed  Google Scholar 

  10. Zhao SX, Ma HL, Lv FR, Zhang ZW, Chen B, Xiao YH. Lateral ventricular volume and calcarine sulcus depth: a fetal MRI analysis of mild ventriculomegaly: A STROBE compliant article. Medicine. 2020;99:e20679.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li H, Liang H, Wu H. Magnetic resonance imaging based correlation analysis between calcarine sulcus development and isolated fetal ventriculomegaly. Congenit Anom. 2017;57:52–6.

    Article  CAS  Google Scholar 

  12. Miguelote RF, Vides B, Santos RF, Palha JA, Matias A, Sousa N. Cortical maturation in fetuses referred for ‘isolated’ mild ventriculomegaly: a longitudinal ultrasound assessment. Prenat Diagn. 2012;32:1273–81.

    Article  CAS  PubMed  Google Scholar 

  13. Aslan Çetin B, Madazlı R. Assessment of normal fetal cortical sulcus development. Arch Gynecol Obstet. 2022;306:735–43.

    Article  PubMed  Google Scholar 

  14. Zhu R, Chen JY, Hou XL, Liu LL, Sun GY. Asymmetric cortical development and prognosis in fetuses with isolated mild fetal ventriculomegaly: an observational prospective study. BMC Pregnancy Childbirth. 2021;21:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffiths PD, Jarvis D, Connolly DJ, Mooney C, Embleton N, Hart AR. Predicting neurodevelopmental outcomes in fetuses with isolated mild ventriculomegaly. Arch Dis Child Fetal Neonatal Ed. 2022;107:431–6.

    Article  PubMed  Google Scholar 

  16. Hahner N, Benkarim OM, Aertsen M, Perez-Cruz M, Piella G, Sanroma G, et al. Global and regional changes in cortical development assessed by MRI in fetuses with isolated nonsevere ventriculomegaly correlate with neonatal neurobehavior. AJNR Am J Neuroradiol. 2019;40:1567–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lockwood Estrin G, Kyriakopoulou V, Makropoulos A, Ball G, Kuhendran L, Chew A, et al. Altered white matter and cortical structure in neonates with antenatally diagnosed isolated ventriculomegaly. NeuroImage Clin. 2016;11:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lyall AE, Woolson S, Wolfe HM, Goldman BD, Reznick JS, Hamer RM, et al. Prenatal isolated mild ventriculomegaly is associated with persistent ventricle enlargement at ages 1 and 2. Early Hum Dev. 2012;88:691–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scott JA, Habas PA, Rajagopalan V, Kim K, Barkovich AJ, Glenn OA, et al. Volumetric and surface-based 3D MRI analyses of fetal isolated mild ventriculomegaly: brain morphometry in ventriculomegaly. Brain Struct Funct. 2013;218:645–55.

    Article  PubMed  Google Scholar 

  20. Napolitano R, Dhami J, Ohuma EO, Ioannou C, Conde-Agudelo A, Kennedy SH, et al. Pregnancy dating by fetal crown-rump length: a systematic review of charts. BJOG : Int J Obstet Gynaecol. 2014;121:556–65.

    Article  CAS  Google Scholar 

  21. Gilbert SJ, Walsh V. Vision: the versatile ‘visual’ cortex. Curr Biol : CB. 2004;14:R1056–57.

    Article  CAS  PubMed  Google Scholar 

  22. Duvernoy H The human brain. Surface, blood supply, and three-dimensional sectional anatomy. 2nd edition. 1999.

  23. Jarvis D, Akram R, Mandefield L, Paddock M, Armitage P, Griffiths PD. Quantification of total fetal brain volume using 3D MR imaging data acquired in utero. Prenat Diagn. 2016;36:1225–32.

    Article  PubMed  Google Scholar 

  24. Gholipour A, Rollins CK, Velasco-Annis C, Ouaalam A, Akhondi-Asl A, Afacan O, et al. A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep. 2017;7:476.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang Y, Wei Y, Guo W, Du J, Jiang T, Ma H, et al. Prenatal titanium exposure and child neurodevelopment at 1 year of age: A longitudinal prospective birth cohort study. Chemosphere. 2023;311:137034.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Li R, Liu H, Duan J, Yao C, Yang R, et al. Impact of maternal hypertensive disorders on offspring’s neurodevelopment: a longitudinal prospective cohort study in China. Pediatr Res. 2020;88:668–75.

    Article  PubMed  Google Scholar 

  27. Kyriakopoulou V, Vatansever D, Elkommos S, Dawson S, McGuinness A, Allsop J, et al. Cortical overgrowth in fetuses with isolated ventriculomegaly. Cereb Cortex (N. Y, NY : 1991). 2014;24:2141–50.

    Article  Google Scholar 

  28. Hahner N, Puerto B, Perez-Cruz M, Policiano C, Monterde E, Crispi F, et al. Altered cortical development in fetuses with isolated nonsevere ventriculomegaly assessed by neurosonography. Prenat Diagn. 2018;38:365–75.

    Article  CAS  PubMed  Google Scholar 

  29. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Sci (N. Y, NY). 2006;311:629–32.

    Article  CAS  Google Scholar 

  30. Kuan CY, Roth KA, Flavell RA, Rakic P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 2000;23:291–7.

    Article  CAS  PubMed  Google Scholar 

  31. Tarui T, Madan N, Graham G, Kitano R, Akiyama S, Takeoka E, et al. Comprehensive quantitative analyses of fetal magnetic resonance imaging in isolated cerebral ventriculomegaly. NeuroImage Clin. 2023;37:103357.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Benkarim OM, Hahner N, Piella G, Gratacos E, González Ballester MA, Eixarch E, et al. Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly. NeuroImage Clin. 2018;18:103–14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Di Mascio D, Sileo FG, Khalil A, Rizzo G, Persico N, Brunelli R, et al. Role of magnetic resonance imaging in fetuses with mild or moderate ventriculomegaly in the era of fetal neurosonography: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;54:164–71.

    Article  PubMed  Google Scholar 

  34. Carta S, Kaelin Agten A, Belcaro C, Bhide A. Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;52:165–73.

    Article  CAS  PubMed  Google Scholar 

  35. Gómez-Arriaga PI, Núñez N, Zamora B, Villalaín C, Risco B, Liébana C, et al. Natural history and mid-term neurodevelopmental outcome of fetuses with isolated mild ventriculomegaly diagnosed in the second half of pregnancy. J Matern-fetal Neonatal Med. 2023;36:2214836.

    Article  PubMed  Google Scholar 

  36. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.

    Article  CAS  PubMed  Google Scholar 

  37. Pigdon L, Willmott C, Reilly S, Conti-Ramsden G, Gaser C, Connelly A, et al. Grey matter volume in developmental speech and language disorder. Brain Struct Funct. 2019;224:3387–98.

    Article  PubMed  Google Scholar 

  38. Wu F, Zhao H, Zhang Y, Wang M, Liu C, Wang X, et al. Morphologic variants of the hand motor cortex in developing brains from neonates through childhood assessed by MR Imaging. AJNR Am J Neuroradiol. 2022;43:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vuijk PJ, Hartman E, Mombarg R, Scherder E, Visscher C. Associations between academic and motor performance in a heterogeneous sample of children with learning disabilities. J Learn Disabilities. 2011;44:276–82.

    Article  Google Scholar 

  40. Kirby KM, Pillai SR, Carmichael OT, Van Gemmert AWA. Brain functional differences in visuo-motor task adaptation between dominant and non-dominant hand training. Exp Brain Res. 2019;237:3109–21.

    Article  PubMed  Google Scholar 

  41. Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci. 2004;19:2888–92.

    Article  PubMed  Google Scholar 

  42. Bolk J, Padilla N, Forsman L, Broström L, Hellgren K, Åden U. Visual-motor integration and fine motor skills at 6½ years of age and associations with neonatal brain volumes in children born extremely preterm in Sweden: a population-based cohort study. BMJ Open. 2018;8:e020478.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yin Q, Johnson EL, Tang L, Auguste KI, Knight RT, Asano E, et al. Direct brain recordings reveal occipital cortex involvement in memory development. Neuropsychologia. 2020;148:107625.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palejwala AH, O’Connor KP, Pelargos P, Briggs RG, Milton CK, Conner AK, et al. Anatomy and white matter connections of the lateral occipital cortex. Surg Radiol Anat. 2020;42:315–28.

    Article  PubMed  Google Scholar 

  45. Tu S, Qiu J, Martens U, Zhang Q. Category-selective attention modulates unconscious processes in the middle occipital gyrus. Conscious Cognit. 2013;22:479–85.

    Article  Google Scholar 

  46. de Haas B, Sereno MI, Schwarzkopf DS. Inferior occipital gyrus is organized along common gradients of spatial and face-part selectivity. J Neurosci. 2021;41:5511–21.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sato W, Kochiyama T, Uono S, Matsuda K, Usui K, Usui N, et al. Bidirectional electric communication between the inferior occipital gyrus and the amygdala during face processing. Hum Brain Mapp. 2017;38:4511–24.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Qin W, Xuan Y, Liu Y, Jiang T, Yu C. Functional connectivity density in congenitally and late blind subjects. Cereb Cortex (N. Y, NY : 1991). 2015;25:2507–16.

    Article  Google Scholar 

  49. He X, Li X, Fu J, Xu J, Liu H, Zhang P, et al. The morphometry of left cuneus mediating the genetic regulation on working memory. Hum Brain Mapp. 2021;42:3470–80.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pearson J. The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci. 2019;20:624–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Guangzhou Municipal Science and Technology Project (202201020627, 202201020630).

Author information

Authors and Affiliations

Authors

Contributions

XZ, ZC YL performed the literature search, preliminary article analysis, drafted, and revised the paper. XZ, FW and HL performed the literature search and screened articles. XZ, ZC, YL, CX, ZL and QW performed the literature search and download. CX, ZL, QW, MK, RY, and XZ analyzed the data and revised the draft manuscript. FW and HL oversaw the project and concept design, monitored the data collection, and revised the draft manuscript. All authors contribute substantially to the article and agree to take responsibility for all aspects of their work.

Corresponding authors

Correspondence to Fan Wu or Hongsheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The Ethics Committee has reviewed this protocol on Fed 6,2023. Approval No: [2023] 022A01.

Consent for publication

The study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, Z., Li, Y. et al. Volume development changes in the occipital lobe gyrus assessed by MRI in fetuses with isolated ventriculomegaly correlate with neurological development in infancy and early childhood. J Perinatol (2024). https://doi.org/10.1038/s41372-024-02012-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-024-02012-3

Search

Quick links