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OBJECTIVE: Preterm infants need enrichment of human milk (HM) for optimal growth. This study evaluated a novel, point-of-care
human milk concentration (HMC) process for water removal from fresh HM samples by passive osmotic concentration.
STUDY DESIGN: Nineteen fresh HM samples were concentrated by incubation with the HMC devices for 3 h at 4 °C. Pre- and post-
concentration HM samples were compared by HM properties for: pH, osmolality, macronutrients, enzyme activity, bioactive, and
total cell viability.
RESULTS: Passive osmotic concentration reduced HM volume by an average of 16.3% ± 3.8% without a significant effect on pH or
cell viability. Ten of the 41 HM components did not differ significantly (p > 0.05) between pre- and post-concentration samples.
Twenty-three increased within the expected range by volume reduction. Six increased more than expected, two less than expected,
and none decreased significantly.
CONCLUSION: Passive osmotic concentration of fresh HM can concentrate HM components by selective removal of water. HM
osmolality and pH remained within neonatal feeding parameters.

Journal of Perinatology; https://doi.org/10.1038/s41372-024-01988-2

INTRODUCTION
Mother’s own milk (MOM) has unique nutritional and health
benefits for preterm infants and reduces neonatal morbidity,
mortality, and NICU costs in a dose-dependent manner [1, 2].
Feeding preterm infants, MOM improves brain, vision, micro-
biome, and immune system development and reduces the
incidence of bronchopulmonary dysplasia (BPD), retinopathy of
prematurity (ROP), necrotizing enterocolitis (NEC), and neonatal
sepsis [3–6]. MOM is a complex, biologically active form of
nutrition; its composition fluctuates due to maternal hormonal
and dietary influences. Artificially replicating MOM will be
incredibly complicated, predictably expensive, and not foresee-
able in the near future [1–8]. Consequently, increasing MOM
intake by preterm infants is a public health priority [7–13].
Even when abundantly available, MOM is generally not the sole

nutrient source for preterm infants due to their high nutrient
needs and lower volume tolerances [14–16]. Most NICUs in the
United States fortify MOM and donor human milk (DHM) with
bovine milk-derived fortifiers, which are the only readily available,
low-cost options to achieve adequate extrauterine growth
[9, 10, 16]. However, the use of bovine milk-derived fortifiers in
preterm infant feeding may impact human milk components and
the risk of morbidities [4, 9, 10, 17]. Donor human milk (DHM)-

derived fortifiers are also available but are more limited in use due
to their higher cost, concerns about ethical sourcing, and a lack of
proven efficacy [15]. Recently DHM-derived fortifiers were also
linked to an increased incidence of hypoglycemia compared with
feeding with bovine milk-derived fortifiers [18]. Moreover, DHM-
derived fortifiers displace as much as 50% of MOM to achieve a
caloric density adequate for preterm infant growth [19]. Thus,
despite the challenge of providing adequate nutrients, feeding
preterm infants fresh MOM should be prioritized for optimal
growth [1–8, 11–14].
Passive osmotic concentration is a novel point-of-care approach

to increasing the nutrient and bioactive content of MOM that
avoids heat and pressure damage and displacement of MOM. This
process relies on osmotic draw across a limited permeable
membrane to remove only the smallest molecules (<0.0007
micron), such as water, from HM. The specific embodiment of such
an approach is a single-use human milk concentration (HMC)
device composed of an osmotic membrane packet that is added
to fresh or thawed HM that leads to passive concentration of HM
components outside the device by removal of a defined amount
of water (Fig. 1). To ensure broad accessibility and implementa-
tion, the HMC device was developed with attention to standard
NICU feeding workflows, cost limitations and is compatible with
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standard 50- to 240-mL breast pump bottles. The HMC device may
be used while HM is stored under refrigeration or being warmed
for feeding. This HMC device has been shown to increase the
concentrations of macronutrients and bioactive molecules in
samples of previously frozen, pasteurized, and unpasteurized HM
[20]. That proof-of-concept study was performed on previously
frozen donor HM without available data on lactation stage,
storage age, or reason for donor bank rejection for use. The HM
sample sets were analyzed after a concentration at temperatures
equivalent to milk storage or feeding preparation in US NICUs.
(4 °C/refrigeration, 20 °C room temperature or 37 °C HM warming
temperature) and results compared to baseline HM nutrient
analysis.
The current study hypothesized that in fresh, never frozen/

thawed HM samples; the sensitive HM components avoid damage
from applied heat or pressure and increase when concentrated via
passive osmosis using the HMC device. To test this hypothesis, the
pH, osmolality, enzymatic activity, and concentrations of macro-
nutrients, fatty acids, lactose, sodium, IgA, and lactoferrin in fresh
HM samples were analyzed at baseline and after passive osmotic
concentration with the HMC device. The impact of passive osmotic
concentration on the viability of cells in fresh HM was also
assessed.

MATERIALS/SUBJECTS AND METHODS
Human milk collection and concentration
The New England IRB approved the study protocol. Participants
were recruited by distributing informational flyers, cooperating
with Mother’s Milk Bank Northeast volunteer coordinators, and
approaching Baby CaféTM participants who self-identified as
having a surplus milk supply sufficient to donate a milk sample
of 60–140mL. Informed consent was obtained.
Fresh HM samples were collected within 30 min to 20 h (avg

11.5 h) after expression. Prior to collection, the samples were
stored by the donors at 4 °C. The time after expression was self-
reported by the donors. Before removing aliquots for baseline
analysis and passive osmotic concentration, the HM samples were
each gently swirled to mix the contents. The aliquot removed for
baseline analysis of unconcentrated HM was stored at 4 °C.
Passive osmotic concentration was performed as follows. First,

the HMC device was rinsed with filtered water warmed to 38 °C
and placed in 75 mL of fresh HM (Vinitial) in an 80-mL
(polypropylene, non-BPA) volume-marked bottle. Next, the bottle
was capped and stored at 4 °C for 3 h to allow passive osmotic
concentration of the HM. Finally, the HMC device was removed,
and the masses of the HM (Vfinal) and the HMC device were
determined [20]. Analyses of the cell viability and energy, fat,

carbohydrate, and protein contents of the concentrated milk were
performed immediately. The remaining matched HM samples
(unconcentrated and concentrated) in their respective containers
were each gently swirled to combine their contents, then
aliquoted and shipped overnight on dry ice to individual
laboratories for other analyses.
The concentration (i.e., volume reduction) of milk was

calculated using the following formula:

Δvol

V initial
x100 ¼ HM

con

where Δvol ¼ j Vfinal � Vinitialj

Human milk macronutrients by mid-infrared analysis
The concentrations of energy, fat, carbohydrates, protein (crude),
and true protein in the HM samples were analyzed using a Miris
Human Milk Analyzer (Miris HMA, Uppsala, Sweden) according to
the published device protocol [21]. The samples were stored at
4 °C before analysis. In brief, the samples were heated to 40 °C in a
Miris heater (Miris, Uppsala, Sweden) and homogenized (Miris
Ultrasonic Processor, Uppsala, Sweden). Each measurement
required 2mL of HM, and the samples were analyzed in duplicate.
The Miris HMA reports crude protein so true protein was
determined by assuming that 20% of the crude protein
measurement is attributable to non-protein nitrogen [22].

Human milk component analysis
The concentrations of protein, lactose, lactoferrin, active IgA, and
sodium in HM were analyzed using unconcentrated and
concentrated HM samples shipped overnight on dry ice. The
samples were received frozen and were stored at –80 °C until
analysis, which was performed immediately after thawing. Protein
concentration was assessed in triplicate using the bicinchoninic
acid (BCA) assay (Cat. No. PI23225, Fisher Scientific, Waltham, MA,
USA) as previously described [23]. The average coefficient of
variation (CV) for protein concentration was 4.0% (range,
0.7–9.3%). The lactose concentration was measured in triplicate
using enzymatic methods (K-LACGAR, Megazyme, Bray, Ireland)
after removal of protein and fat using Carrez I and II solutions
(SC9101 and SC9102, Fisher Scientific) and filtering. This metho-
dology is based on the methods of AOAC 2006.06 and has been
validated in HM [24]. The average CV for lactose content was 2.2%
(range, 0.2–9.3%). The lactoferrin concentration was determined in
triplicate using a commercial enzyme-linked immunosorbent
assay (ELISA) kit for human lactoferrin (Cat. No. EL2011-1,
AssayPro, St. Charles, MO, USA) [25]. The average CV for lactoferrin
concentration was 3.5% (range, 0.7–11.4%). IgA activity against E.

HMC

1 2 3

Fig. 1 Human Milk Concentration Device steps of use. (1) Place HMC device in MOM, (2) HMC device passively absorbs water, (3) HMC device
is removed, and concentrated milk is fed to a preterm infant.
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coli antigens was measured in triplicate by ELISA, as previously
described [26]. The average CV for active IgA concentration was
3.9% (range, 0.8–8.5%). The sodium concentration was measured
in duplicate using a benchtop ion-selective electrode system
(Orion Dual Star Dual Channel Benchtop Meter with Orion ROSS
Sodium Combination Electrode, Thermo Fisher Scientific, Wal-
tham, MA, USA) [27]. The average CV for sodium concentration
was 0.1% (range, 0.0–0.6%).

Human milk enzymatic activity analysis
Enzymatic activity in HM was analyzed using unconcentrated and
concentrated HM samples shipped overnight on dry ice. The
samples were thawed at 4 °C and centrifuged at 4250 × g for
10min at 4 °C. The infranatant from below the upper-fat layer was
collected by pipette and stored in 400 µL aliquots at −80 °C until
use in assays. The aliquots were thawed only once to avoid
possible enzyme degradation during thawing and freezing.
Commercial assay kits were used to measure the activities of
lysozyme (Cat. No. K236-100, BioVision, Milpitas, CA, USA), platelet-
activating factor (PAF) acetylhydrolase (Cat. No. K765-100, BioVi-
sion), catalase (Cat. No. K773-100, BioVision) and glutathione
peroxidase (Cat. No. K762-100, BioVision) according to the
manufacturers’ instructions. The HM samples were used at 1×
and 2× dilutions for lysozyme activity assays, 4× and 8× dilutions
for PAF acetylhydrolase activity assays, 50× and 100× dilutions for
catalase activity assays, and 400× and 800× dilutions for
glutathione peroxidase activity assays.
Bile salt-stimulated lipase (BSSL) activity was assayed as

described by Koh et al. [28] with some modifications. HM samples
were used at 2× and 4× dilutions. A standard curve was
constructed by serial dilution of p-nitrophenol to obtain a
concentration range of 23.44 to 750 µM. The production of p-
nitrophenol from p-nitrophenyl myristate was measured in a
spectrophotometer by monitoring the absorbance at 405 nm
every 30 s for 10 min at 37 °C.

Human milk oligosaccharide analysis
Nineteen HM oligosaccharides (HMOs) were selected for analysis.
These HMOs were selected because their absolute concentrations
can be measured via separation and identification on an HPLC
column with chemically defined standards used as a reference.
These HMOs were analyzed using a previously published protocol
[29]. The HMOs analyzed were: 2’-fucosyllactose (2’-FL), lacto-N-
difucohexaose I (DFLNT), lacto-N-hexaose (LNH), disialyllacto-N-
tetraose (DSLNT), 3-fucosyllactose (3FL), lacto-N-neotetraose
(LNnT), sialyl-lacto-N-tetraose c (LSTc), disialyllacto-N-hexaose
(DSLNH), 3’-sialyllactose (3’-SL), fucosyllacto-N-hexaose (FLNH),
difucosyllacto-N-hexaose (DFLNH), difucosyllactose (DFLAC),
lacto-N-tetraose (LNT), sialyl-lacto-N-tetraose b (LSTb), fucosyl-
disialyllacto-N-hexose (FDSLNH), 6’-sialyllactose (6’SL), lacto-N-
fucopentaose I (LNFP I), lacto-N-fucopentaose II (LNFP II), lacto-
N-fucopentaose III (LNFP III).

Small molecule analysis
The concentrations of free choline, phosphocholine, betaine,
phosphatidylcholine (PC) and sphingomyelin (SPH) were deter-
mined by high-performance liquid chromatography tandem mass
spectrometry (HPLC-MS/MS) using stable isotope-labeled internal
standards. Free choline, phosphocholine and betaine were
analyzed simultaneously as described previously [30]. The
quantitative HPLC-MS/MS assay was highly reproducible for free
choline and betaine measurement, with inter- and intra-assay CVs
of ~3%. However, the quantitative HPLC-MS/MS assay was not
highly reproducible for phosphocholine measurement, with inter-
and intra-assay CVs of <12%. PC and SPH were analyzed
separately using a modification of the method of Lindahl et al.
[31]. The CVs were 4% for PC analysis and 10% for SPH analysis.

Fatty acid analysis
Fatty acid content was analyzed by gas chromatography (GC)
following the method of Lepage and Roy [32]. An Agilent 6850 gas
chromatograph equipped with a flame ionization detector (FID),
an SP2380 column (15mm× 0.25 mm), and Agilent ChemStation
software were used. Hydrogen was used as the carrier gas. To
determine fatty acid content, the area counts of individual fatty
acids were compared to the area counts of known quantities of
nonanoic acid (C9:0) and heptadecanoic acid (C17:0), which were
added to the HM samples as internal standards. The inclusion of
internal standards also enabled the correction of the detector
response for short-chain fatty acids of 12 carbons or fewer. The
total fatty acid content was calculated by summing the contents
of the individual fatty acids. For quality control of the total fatty
acid and individual fatty acid content measurements, one milk
sample was analyzed 5 times on the same day to determine the
intra-assay variability, and the same sample was analyzed on 4
additional days to determine the inter-assay variability. The
quantitative GC-FID assay for total fatty acids was highly
reproducible, with inter- and intra-assay CVs of <2%.
To determine the linearity of the assay over a range of fatty acid

concentrations, the contents of individual fatty acids and total
fatty acids in different volumes of one milk sample were
determined. The relationship between HM sample volume (i.e.,
total fatty acid quantity) and total fatty acid content was linear
between ~3.75 and 6.1 g/dL (r2= 0.996).

pH and osmolality analysis
The pH and osmolality of HM were analyzed using concentrated and
unconcentrated HM samples that had been shipped on dry ice and
stored at −80 °C. After thawing, the pH of the sample was measured
with a SevenCompact S220 pH/ion meter (Mettler-Toledo) equipped
with a combined sealed glass electrode. The electrode was equilibrated
before the pH value was recorded. Osmolality was measured in
duplicate using an osmometer (Model 3320, Advanced Instruments,
Norwood, MA, USA) after calibrating the machine with a 290mOsm
standard. If duplicate readings differed by more than 3mOsm, a third
reading was taken. Only one sample required a third reading.

Human milk cell viability analysis
Cells were isolated from unconcentrated and concentrated HM
samples using the protocol of Hassiotou et al. [33]. Briefly, the HM
samples were diluted 1:2 with PBS and centrifuged at 800 × g for
20min. The fat layer and supernatant were removed, and the cell
pellet was resuspended in 1–2mL of PBS and centrifuged again.
After another round of resuspension in PBS and centrifugation to
wash the cells, the supernatant was removed, and the cells were
resuspended in a small volume of PBS. Finally, the cells were
counted using trypan blue exclusion in an automated cell counter
(Countess, Thermo Fisher). Samples were processed pairwise, and
the percentages of live and dead cells were compared between
unconcentrated and concentrated HM samples.

Statistical analysis
All data were analyzed using JMP Version 17.2. Outliers were
identified using a robust fit by Huber M-Estimation to estimate the
center and spread (K Sigma= 4). Paired t tests were used to
determine if differences in the concentrations of components
were statistically significant (p < 0.05).

RESULTS
Volume reduction of human milk by passive osmotic
concentration
The average percentage reduction in fresh HM volume (HMcon) after
passive osmotic concentration using the HMC device was 16.3%±
3.8% (Fig. 2). Assuming no nutrient loss during passive osmotic
concentration, the percentage increase in the content of an HM

E.R. Schinkel et al.

3

Journal of Perinatology



component (Ncon) is expected to be greater than HMcon scaled by the
ratio of Vinitial toVfinal , as illustrated by the following comparison
(where Nabs is the mass of the nutrient and Vinitial is 75mL):

Nabs
Vfinal

� Nabs
Vinitial

�
�
�

�
�
�

Nabs
Vinitial

x100 ¼ Ncon

1
Vfinal

� 1
Vinitial

� ��
�
�

�
�
�

1
Vinitial

x100

Vinitial � Vfinalj j
Vfinal

x100 ¼ Δvol

Vfinal
x100 ¼ Ncon

Vinitial

V initial

Δvol

V final
x100 ¼ Vinitial

Vfinal

Δvol

V initial
x100

� �

¼ Vinitial

Vfinal
HMconð Þ ¼ Ncon

Vinitial

Vfinal
HMconð Þ ¼ Ncon

Vinitial

Vfinal
>1

Therefore,

Ncon>HMcon

Given the average HMcon of 16:3%± 3:8%; Ncon values in the
range of 14–25% were expected. Figure 1 compares the Ncon

values of each analyzed HM component with HMcon . As shown in
Figs. 3–5, ten of the 41 analyzed HM components did not differ
significantly (p > 0.05) between unconcentrated and concentrated
HM: PAF acetylhydrolase activity, lysozyme activity, glutathione
peroxidase activity, catalase activity, phosphocholine concentra-
tion, and the concentrations of the HMOs: LSTc, DFLNT, 6’SL, LNFP
II, and 3FL.

Enzyme activity and nutrients
The box plots in Figs. 3 and 4 present the mean and standard
deviation (SD) of enzyme activities and nutrient concentrations in
HM before and after passive osmotic concentration. Among the
five enzymes assayed, only the increase in BSSL activity was
significant (21.5% ± 39%; p < 0.05) (Fig. 3). The increase in BSSL
activity was also within the expected range.
The concentrations of all nutrients analyzed by MIRIS, i.e.,

carbohydrates, crude protein, energy, total fat, true protein, and
total solids, increased significantly (p < 0.05) after treatment of HM
with the HMC device (Figs. 3 and 4). All increases were within the
expected range. The concentrations of sodium, protein, lactose,
lactoferrin, and active IgA also increased significantly (p < 0.05)
after passive osmotic concentration (Fig. 4). All increases were
within the expected range with the exception of the increase in
the concentration of active IgA (5.9 ± 10.2%), which was smaller
than expected.
The concentrations of total fatty acids and all small molecules

except phosphocholine increased significantly (p < 0.05) after
passive osmotic concentration (Fig. 4). The increases in total fatty
acids and SPH were within the expected range. The increases in
betaine and free choline were greater than expected
(32.4% ± 22.3% and 28.3% ± 9.6%, respectively). The failure to
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observe significant enrichment of phosphocholine may be
attributable to the poor reproducibility of the HPLC-MS/MS assay
for phosphocholine.

Human milk oligosaccharides
As shown in Fig. 5, the concentrations of 14 of the 19 analyzed
HMOs increased significantly (p < 0.05) after passive osmotic
concentration. The exceptions were LSTc, DFLNT, 6’SL, LNFP II
and 3FL. 3FL was the single HMO to decrease in concentration
though this was not significant. Among the other 14 HMOs, the
increases in the concentrations of LSTb, LNH, LNnT, FLNH, LNFP I,
FDSLNH, 3’SL, LNT, and 2’FL were within the expected range. The
concentrations of LNFP III, DFLNH, DSLNH, and DSLNT increased
more than expected, whereas the concentration of DFLac
increased less than expected.

pH and osmolality
The mean pH of concentrated HM (7.08 ± 0.27) was lower than
that of unconcentrated HM (7.37 ± 0.28), but this difference was
not significant (p > 0.05). The mean osmolality increased signifi-
cantly (p < 0.05) by 33%, from 295 ± 3.44 mOsm in unconcentrated
HM to 392 ± 28.7 mOsm in concentrated HM.

Total cell viability
The mean percentage of live cells did not differ significantly
between unconcentrated HM and concentrated HM (7.63% versus
5.68%, p > 0.05).

DISCUSSION
The findings support the ability of the passive osmotic HMC
device to concentrate fresh HM components in a novel point-of-
care process. The osmolality and pH of the concentrated HM were
within typical neonatal feeding parameters, supporting feeding
tolerance. Among the 41 analyzed HM components, the
concentrations of 31 were significantly increased by passive
osmotic concentration; none were significantly decreased. The
samples increased on average by 20% in kcal and protein with an
average baseline of 22 kcal/oz with 1.16 gm protein/dl to post HM
concentration 26 kcal/oz with 1.39 gm protein/dl.
Point-of-care concentration of MOM may be an alternative to

adding fortifiers to MOM. Due to the high digestibility of MOM,

concentrated MOM feedings may have greater absorption than
formula/fortified feedings. Increasing the transfer of bioactive
molecules, antioxidant capacity, and total nutrients via MOM may
improve the short- and long-term health of preterm infants, which
could have substantial economic and public health benefits.
Moreover, the point-of-care passive osmotic concentration of

MOM using the HMC device avoids heat or pressure damage to
fragile components that are unique to MOM, such as living cells,
digestive enzymes, and bioactive molecules. Commercial fortifiers
have been shown to reduce the activity of some enzymes and
immune components in human milk [23, 34]. By avoiding or
reducing the use of fortifiers, feeding concentrated MOM may
ensure that these enzymes are most active in the neonatal gut
versus interacting with a fortifier while in a storage container. A
recent study indicated that most mothers of preterm infants in
NICUs who are physically able to and desire to establish lactation
can establish an adequate maternal milk supply [35–37]. In a
survey of parents whose babies had been in NICUs, the majority
associated their baby’s feeding fortification in the NICU with
feelings of powerlessness, inadequacy, disappointment, and worry
[38]. Conversely, a previous study documented that NICU mothers
felt empowered by providing their own milk for feeding their
preterm babies in the NICU [39].
HM concentration is a paradigm change that warrants further

study due to its potential to provide greater benefits than current
feeding models. Importantly, HM concentration via passive
osmosis may increase the efficiency of the NICU feeding
preparation workflow rather than diminish it. The passive osmotic
membrane technology comprises components that are already
used in neonatal feeding and care and are similar to the way
plants naturally draw water into the xylem via osmosis. Osmosis
has long been used to filter water and to concentrate bovine dairy
products under pressure. Water removal from HM via passive
osmosis may be far less risky than feeding preterm infants bovine-
derived formulas.

Limitations and future directions
The findings of this study are subject to limitations of the study design
and methodologies. Because the HMC device is intended for point-of-
care use, fresh HM samples were analyzed in this study, which limited
the sample size. Moreover, because the fresh HM samples were
provided by volunteer donors, the expression conditions and storage
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times varied, which may explain the low cell viability in the
unconcentrated samples. In some cases, the storage time exceeded
20 h, whereas the average viability of cells in HM is 8 h. Nonetheless,
cell viability did not differ significantly between unconcentrated and
concentrated HM, indicating that passive osmotic concentration by
the HMC device did not reduce cell viability. Follow-up studies
collecting larger numbers of fresh HM samples and information on
the lactation cycles of the HM donors are required.
Among methodological limitations, the accuracy of the Miris

HMA when used with concentrated HM samples has not been
validated. Two different methods for measuring protein (BCA and
infrared) indicated similar degrees of concentration by the device,
suggesting that Miris can accurately measure higher protein
concentrations in HM. Structural commonalities in HMOs may
explain why some HMOs did not increase as much as other HMOs
in concentrated HM samples, which may be clarified by further
study. For example, 6’SL and LSTc each carry a 2–6 sialic acid
linked to a terminal galactose, which introduces a specific
negative charge that may interact with the membrane and be
retained. In addition, the measurements of total fatty acid
concentration were highly variable, which may have been due
to the presence of concentrations outside the linear range of the
GC-FID assay. The GC-FID assay was shown to be linear between
3.75 and 6.1 g/dL, whereas the total fatty acid concentration in the
unconcentrated HM samples ranged from 1.7 g/dL to 7.6 g/dL.
However, the linear dynamic range of flame ionization detection
in GC is very wide, i.e., up to 7 orders of magnitude; thus, the
linearity of the GC assay can likely be extrapolated to cover the
entire range of total fatty acid content in HM samples. Finally, in
some HM samples, the concentrations of HM components did
significantly change after incubation with the HMC device. This
phenomenon was particularly common for phosphocholine.
Phosphocholine is more challenging to analyze by HPLC-MS/MS
than free choline or betaine because it is simultaneously positively
and negatively charged, and the negatively charged phosphate
group is known to interact with exposed cations in the HPLC’s
stainless steel tubing, especially at low concentrations. The CV was
~10% for phosphocholine, in contrast to ~3% for free choline or
betaine. Further studies of the interactions of specific HM
components of different charges and sizes with osmotic
membranes are needed.
Future studies should also examine other beneficial HM

components that may be enriched by point-of-care passive
osmotic concentration of HM. Hormone content in MOM and
DHM is an area of expanding research [18]. One example,
melatonin is provided exclusively by MOM or DHM until
endogenous production of melatonin begins in infants at ~90 days
of life. Metabolites of melatonin have scavenger functions and can
‘induce an antioxidant cascade that quenches ten radical
products…making it more efficient than glutathione’ [40]. There
are conflicting research findings on the impact of pasteurization
techniques on melatonin levels in donor HM. In addition, the
impact of point-of-care passive osmotic concentration of fresh
MOM (<4 h old) on neonatal growth rates warrants further
investigation. The passive osmotic process may amplify the
benefits of feeding preterm infants fresh MOM. Additionally, pH
is logarithmic, so the shift noted should be further investigated to
evaluate if increasing enzymatic activity may reduce pH. Filatava
et al found variations in pH of MOM based on lactation stage and
maternal diet; and also that fortified MOM had a lower pH than
MOM at baseline [41]. Fortified MOM’s pH decreased over storage
time in Filatava’s study, and it was noted that common HMF
products are noted to be acidic (pH 5.79–5.94), whereas the
concentrated MOM in our study had pH levels closer to unfortified
MOM. This indicates that concentrated MOM may have less
change in pH, which may improve feeding preterm infant
tolerance despite increased nutrient density by volume, and

further study is indicated to assess the clinical impact of non-
significant changes in pH.
Future studies will focus standard FDA-indicated safety analysis

to confirm lack of leachables, toxicology, and bacteria analysis as
well as evidence base for the improved clinical outcomes and
further integration into donor milk banks.

CONCLUSION
The COVID-19 pandemic, the 2022 US infant formula supply chain
crisis, and recent formula recalls in 2024 illuminated the
importance of MOM as an ideal preterm infant food that provides
immunologically protective benefits and nutrition [42]. Point-of-
care passive osmotic concentration of MOM using the HMC device
may be a valuable novel approach to support and enhance the
impact of MOM in neonatal feeding. Exclusive breastfeeding/MOM
feeding and extended lactation through the first year of life have
proven benefits for both preterm infants and their mothers [43].
Point-of-care passive osmotic concentration of MOM may

empower the mothers of preterm infants by enabling them to
feed their babies more mother’s own milk and by reinforcing the
positive impact of lactation.
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