Abstract
Objective
Identify clinical factors that delay or prolong spontaneous regression of retinopathy of prematurity (ROP).
Study design
Secondary analysis of three prospective studies with 76 infants with ROP not requiring treatment, born ≤30 weeks postmenstrual age (PMA) and ≤1500 grams. Outcomes were PMA at greatest severity of ROP (PMA MSROP), at which regression began, at time of complete vascularization (PMA CV), and regression duration. Pearson’s correlation coefficients, t-tests, or analyses of variance were calculated.
Results
Increased positive bacterial cultures, hyperglycemia, transfusion volume of platelets and red blood cells and severity of ROP were associated with later PMA MSROP. Positive bacterial cultures, maternal chorioamnionitis, and less iron deficiency were associated with later PMA CV and prolonged regression duration. Slower length gain was associated with later PMA CV. P < 0.05 for all.
Conclusions
Preterm infants with inflammatory exposures or linear growth impairment may require longer surveillance for ROP resolution and complete vascularization.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

Data availability
The dataset generated during this study is available from the corresponding author on reasonable request.
References
Binenbaum G, Bell EF, Donohue P, Quinn G, Shaffer J, Tomlinson LA, et al. Development of modified screening criteria for retinopathy of prematurity: primary results from the postnatal growth and retinopathy of prematurity study. JAMA Ophthalmol. 2018;136:1034–40.
Khan SI, Ryu WY, Wood EH, Moshfeghi DM, Shah JK, Lambert SR. Retinopathy of prematurity treatment trends from 2003 to 2020 in the United States. Ophthalmology. 2022;129:1216–8.
Repka MX, Palmer EA, Tung B. Involution of retinopathy of prematurity. cryotherapy for retinopathy of prematurity cooperative group. Arch Ophthalmol. 2000;118:645–9.
Ni YQ, Huang X, Xue K, Yu J, Ruan L, Shan HD, et al. Natural involution of acute retinopathy of prematurity not requiring treatment: factors associated with the time course of involution. Invest Ophthalmol Vis Sci. 2014;55:3165–70.
Eliason KJ, Dane Osborn J, Amsel E, Richards SC. Incidence, progression, and duration of retinopathy of prematurity in Hispanic and white non-Hispanic infants. J AAPOS. 2007;11:447–51.
Ju RH, Zhang JQ, Ke XY, Lu XH, Liang LF, Wang WJ. Spontaneous regression of retinopathy of prematurity: incidence and predictive factors. Int J Ophthalmol. 2013;6:475–80.
Yum HR, Park SH. Clinical features of premature twin babies with intersibling asymmetry of retinopathy of prematurity severity. Can J Ophthalmol. 2022;57:337–43.
Wang L, Li M, Zhu J, Yan H, Wu L, Fan J, et al. Clinical features of spontaneous regression of retinopathy of prematurity in China: a 5-year retrospective case series. Front Med (Lausanne). 2021;8:731421.
Wu C, Löfqvist C, Smith LE, VanderVeen DK, Hellström A, Consortium W. Importance of early postnatal weight gain for normal retinal angiogenesis in very preterm infants: a multicenter study analyzing weight velocity deviations for the prediction of retinopathy of prematurity. Arch Ophthalmol. 2012;130:992–9.
Belfort MB, Ramel SE, Martin CR, Fichorova R, Kuban KCK, Heeren T, et al. Systemic inflammation in the first 2 weeks after birth as a determinant of physical growth outcomes in hospitalized infants with extremely low gestational age. J Pediatr. 2022;240:37–43.e1.
Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology. 2012;102:19–24.
Scheurer JM, Gray HL, Demerath EW, Rao R, Ramel SE. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J Perinatol. 2016;36:145–50.
Ingolfsland EC, Haapala JL, Buckley LA, Demarath EW, Guiang SF, Ramel SE. Late growth and changes in body composition influence odds of developing retinopathy of prematurity among preterm infants. Nutrients. 2019;12:78.
Morris EE, Miller NC, Marka NA, Super JL, Nagel EM, Gonzalez JD, et al. Randomized trial of early enhanced parenteral nutrition and later neurodevelopment in preterm infants. Nutrients. 2022;14:3890.
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.
Fierson WM, Ophthalmology AAOPSo, OPHTHALMOLOGY AAO, STRABISMUS AAFPOA, ORTHOPTISTS AAOC. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2018;142:e20183061.
Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Quintos M, et al. The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics. 2005;116:15–23.
Good WV, Group ETfRoPC. Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc. 2004;102:233–48. discussion 48-50
Quinn GE, Ying GS, Bell EF, Donohue PK, Morrison D, Tomlinson LA, et al. Incidence and early course of retinopathy of prematurity: secondary analysis of the postnatal growth and retinopathy of prematurity (G-ROP) study. JAMA Ophthalmol. 2018;136:1383–9.
Wang X, Tang K, Chen L, Cheng S, Xu H. Association between sepsis and retinopathy of prematurity: a systematic review and meta-analysis. BMJ Open. 2019;9:e025440.
Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ, et al. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics. 2005;115:990–6.
Brooks SE, Marcus DM, Gillis D, Pirie E, Johnson MH, Bhatia J. The effect of blood transfusion protocol on retinopathy of prematurity: a prospective, randomized study. Pediatrics. 1999;104:514–8.
Satrom KM, Ennis K, Sweis BM, Matveeva TM, Chen J, Hanson L, et al. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J Neuroinflammation. 2018;15:82.
Sun Q, Li J, Gao F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J Diabetes. 2014;5:89–96.
Goldstein GP, Leonard SA, Kan P, Koo EB, Lee HC, Carmichael SL. Prenatal and postnatal inflammation-related risk factors for retinopathy of prematurity. J Perinatol. 2019;39:964–73.
Jiang S, Yang Z, Shan R, Zhang Y, Yan W, Yang Y, et al. Neonatal outcomes following culture-negative late-onset sepsis among preterm infants. Pediatr Infect Dis J. 2020;39:232–8.
Kim CY, Jung E, Kim EN, Kim CJ, Lee JY, Hwang JH, et al. Chronic placental inflammation as a risk factor of severe retinopathy of prematurity. J Pathol Transl Med. 2018;52:290–7.
Lynch AM, Berning AA, Thevarajah TS, Wagner BD, Post MD, McCourt EA, et al. The role of the maternal and fetal inflammatory response in retinopathy of prematurity. Am J Reprod Immunol. 2018;80:e12986.
Pfister KM, Ramel SE. Linear growth and neurodevelopmental outcomes. Clin Perinatol. 2014;41:309–21.
Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P, et al. Infant growth before and after term: effects on neurodevelopment in preterm infants. Pediatrics. 2011;128:e899–906.
Belfort MB, Rifas-Shiman SL, Kleinman KP, Guthrie LB, Bellinger DC, Taveras EM, et al. Infant feeding and childhood cognition at ages 3 and 7 years: Effects of breastfeeding duration and exclusivity. JAMA Pediatr. 2013;167:836–44.
Latal-Hajnal B, von Siebenthal K, Kovari H, Bucher HU, Largo RH. Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. J Pediatr. 2003;143:163–70.
Silveira RC, Fortes Filho JB, Procianoy RS. Assessment of the contribution of cytokine plasma levels to detect retinopathy of prematurity in very low birth weight infants. Invest Ophthalmol Vis Sci. 2011;52:1297–301.
Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem. 1996;271:736–41.
Lee J, Dammann O. Perinatal infection, inflammation, and retinopathy of prematurity. Semin Fetal Neonatal Med. 2012;17:26–9.
Rao R, Georgieff MK. Perinatal aspects of iron metabolism. Acta Paediatr Suppl. 2002;91:124–9.
Fortes Filho JB, Bonomo PP, Maia M, Procianoy RS. Weight gain measured at 6 weeks after birth as a predictor for severe retinopathy of prematurity: study with 317 very low birth weight preterm babies. Graefes Arch Clin Exp Ophthalmol. 2009;247:831–6.
Lundgren P, Stoltz Sjöström E, Domellöf M, Källen K, Holmström G, Hård AL, et al. WINROP identifies severe retinopathy of prematurity at an early stage in a nation-based cohort of extremely preterm infants. PLoS One. 2013;8:e73256.
Arthur CM, Nalbant D, Feldman HA, Saeedi BJ, Matthews J, Robinson BS, et al. Anemia induces gut inflammation and injury in an animal model of preterm infants. Transfusion. 2019;59:1233–45.
Singh G, Wallin DJ, Abrahante Lloréns JE, Tran PV, Feldman HA, Georgieff MK, et al. Dose- and sex-dependent effects of phlebotomy-induced anemia on the neonatal mouse hippocampal transcriptome. Pediatr Res. 2022;92:712–20.
Cao JH, Wagner BD, McCourt EA, Cerda A, Sillau S, Palestine A, et al. The Colorado-retinopathy of prematurity model (CO-ROP): postnatal weight gain screening algorithm. J AAPOS. 2016;20:19–24.
Nagurney JT, Brown DF, Sane S, Weiner JB, Wang AC, Chang Y. The accuracy and completeness of data collected by prospective and retrospective methods. Acad Emerg Med. 2005;12:884–95.
Funding
The Clinical and Translational Science Institute2 at the University of MN is supported by the National Institutes of Health’s National Center for Advancing Translational Sciences, grant UL1TR002494 (author SL).
Author information
Authors and Affiliations
Contributions
JS and SR performed the investigation, contributed to the data analysis, and wrote the initial draft. SL designed the methodology, performed the formal data analysis, and edited the final manuscript. SR conceptualized the study, performed the investigation, provided resources and supervision, and edited the final manuscript. MG conceptualized the study, provided supervision, and edited the final manuscript. JA conceptualized the study and defined the methodology, provided supervision, and wrote and edited the manuscript. EI conceptualized the study, developed the methodology, curated the data, provided supervision, and drafted and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
This sponsor had no role in the study design, data collection, analysis, or interpretation, writing of the report, or decision to submit for publication. There are no other competing financial interests in relation to the work described.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Schoephoerster, J., Roston, S., Lunos, S. et al. Identification of clinical factors associated with timing and duration of spontaneous regression of retinopathy of prematurity not requiring treatment. J Perinatol (2023). https://doi.org/10.1038/s41372-023-01649-w
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41372-023-01649-w