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for critically ill infants in neonatal intensive care units
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Genetic disorders are a leading cause of morbidity and mortality in infants admitted to neonatal intensive care units. This
population has immense potential to benefit from genomic medicine, as early precision diagnosis is critical to early
personalized management. However, the implementation of genomic medicine in neonatology thus far has arguably worsened
health inequities, and strategies are urgently needed to achieve equitable access to genomics in neonatal care. In this
perspective, we demonstrate the utility of genomic sequencing in critically ill infants and highlight three key recommendations
to advance equitable access: recruitment of underrepresented populations, education of non-genetics providers to empower
practice of genomic medicine, and development of innovative infrastructure to implement genomic medicine across diverse

settings.
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INTRODUCTION

Genomic medicine (GM) has rapidly advanced since exome
sequencing was first utilized for patient diagnosis in 2010 [1].
Critically ill infants admitted to neonatal intensive care units
(NICUs) represent a population with high rates of genetic
disorders and associated morbidity and mortality, and arguably
have the greatest potential to benefit from GM, as early diagnosis
is critical to optimizing the benefits of early tailored management,
including a growing number of pioneering personalized therapies
[2]. Genomic (exome or genome) sequencing (GS) has the
potential to transform neonatal care, with multiple studies
demonstrating diagnostic, clinical, personal, and informational
utility for critically ill infants with underlying genetic disorders and
their families [2, 3]. However, the implementation of GM in clinical
care thus far has arguably worsened health inequities, and
strategies are urgently needed to achieve equitable access in this
critical population [4, 51.

POTENTIAL OF GENOMIC MEDICINE

Genetic disorders contribute to significant morbidity—with often
lifelong consequences—and mortality during infancy. The
advances in obstetric care and neonatology over the past several
decades have reduced morbidity and mortality (M&M) from other
perinatal conditions (e.g., surfactant administration for respiratory
distress syndrome), and the leading causes of infant mortality in
the United States are now reported to be genetic [6, 7]. Reducing
M&M due to genetic disorders will require precision medicine
approaches, for which the first step is identifying the underlying
genetic diagnoses. Up to 25% of critically ill infants in NICUs may

have an undiagnosed genetic condition; the majority undiag-
nosed due to limited access to GS [8-11].

Broadly, any critically ill infant with a disease of unknown
etiology may be suspected to have an underlying genetic disorder
and considered for GS. Based on previous studies and our own
experience, specific phenotypic criteria in the neonatal period to
prioritize for GS may include multiple congenital anomalies (or a
single major anomaly with accompanying syndromic features) as
well as neurologic, metabolic, or other severe organ system
abnormalities of unknown etiology [12-14]. A recent evidence-
based guideline from the American College of Medical Genetics
and Genomics recommends GS for infants (<1 year old) with one
or more congenital anomalies [15]. However, it is important to
remember that genetic disorders may present with nonspecific
clinical findings during the neonatal period and certain clinical
features associated with genetic disorders may not present until
later in life. Ideally, GS should be considered as a comprehensive
diagnostic test for any critically ill infant who lacks a clear non-
genetic explanation for his or her presentation.

Rapid GS has multiple potential benefits for critically ill infants
with suspected genetic disorders and their families. First, GS may
lead to a genetic diagnosis and end the diagnostic odyssey
(diagnostic utility). A recent review of 31 studies of rapid GS in
neonatal and pediatric patients in intensive care settings reported
a weighted average diagnostic rate of 36% [2]. Second, GS may
lead to change(s) in clinical management (clinical utility); the same
review reported a weighted average change in management rate
of 27% [2]. A genetic diagnosis may influence treatment (lead to
starting, changing, or stopping treatment), workup (lead to new
workup or avoidance of unnecessary workup), and goals of care
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Identification

¢ Dysmorphic features may be underrecognized in infants of non-European ancestry.

in NICUs where GS is a clinically available test.

Availability &
Approval

* Infants from racial and ethnic minority populations, lower income households, and/or medically underserved areas may be less likely to receive care

¢ Infants from these populations may be less likely to have insurance that will approve GS.

¢ Families from racial and ethnic minority populations may be more likely to have literacy, language, cultural, trust, or other barriers to GS consent.
« Infants from racial and ethnic minority populations, lower income households, and/or medically underserved areas may be less likely to receive care
in NICUs where clinical geneticists or genetic counselors are available to help with GS consent.

Sample
Collection

J
« Parents from racial and ethnic minority populations, lower income households, and/or medically underserved areas may be more likely to have
transportation, childcare, work, or other barriers that delay sample collection.
J
¢ Infants from racial and ethnic minority populations may be more likely to have non-diagnostic GS results.
HEOEELEE] » Populations of non-European ancestry are underrepresented in genetic variant databases.
J

Analysis

Results
Return

* Infants from racial and ethnic minority populations, lower income households, and/or medically underserved areas may be less likely to receive care
in NICUs where clinical geneticists or genetic counselors are available to help with interpretation and return of GS results.

¢ Infants from the above populations may be less likely to have access to needed follow up care with clinical geneticists and additional subspecialists.
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Fig. 1

Potential barriers to equitable access to genomic medicine in neonatal intensive care units. Barriers to equitable access exist at

multiple steps of the genomic medicine process, from identification of patients for genomic sequencing to return of genomic sequencing
results and follow up. It is important to acknowledge that racism on the internalized, interpersonal, institutional, and structural levels may be a

barrier at every step.

(e.g., transition to comfort care). Further, a genetic diagnosis may
enable access to etiology-specific research like natural history
studies and clinical trials of emerging precision therapies. We also
note that nondiagnostic GS has been reported to lead to changes
in management in some cases [16]. Third, a genetic diagnosis may
influence prognostic and reproductive counseling (informational
utility); for example, the likelihood of developmental delay/
intellectual disability for the former and recurrence risk for the
latter. Fourth, a genetic diagnosis may provide additional patient-
reported benefits (personal utility) for the infant and family [17].
Finally, we note that recent studies have demonstrated the cost-
effectiveness of GS in the NICU setting [16, 18].

Thus, while we recognize that inequitable access to genomic
medicine is present across our health care system, we believe that
GS currently has the greatest potential to impact medical care of
the NICU population. In this perspective, we use critically ill infants
in NICUs as a paradigm population to describe barriers to
equitable access to genomic medicine and recommendations to
overcome those barriers. When referring to GS below, we are
specifically referring to “rapid” GS that can provide clinically
accredited results in <1-2 weeks.

BARRIERS TO IMPLEMENTATION OF GENOMIC MEDICINE
Barriers to equitable access exist at multiple steps of the GM
implementation process, and it is important to acknowledge that
racism on the internalized, interpersonal, institutional, and
structural levels may be a barrier at every step [19, 20] (Fig. 1).
Race and ethnicity are social, and not biological, constructs and
are different from genetic ancestry; however, there are inequities
in health care related to race and ethnicity [21].

First, neonatal providers need to suspect that an admitted infant
has an underlying genetic disorder and decide that GS is an
appropriate test. At community and/or rural NICUs that often
provide care for infants from (1) racial and ethnic minority
populations, (2) lower income households, and/or (3) underserved
areas, providers may not have access to clinical geneticists or
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genetic counselors (GCs) to assist with this process [22, 23].
Providers without formal training in clinical genetics may lack
knowledge about genetics and genomics, have difficulty appro-
priately identifying infants with suspected genetic disorders, and/or
have mixed attitudes toward genetic testing [24, 25]. Moreover, the
“classic” dysmorphic features that may raise suspicion for certain
genetic disorders are based on Northern European populations, and
infants of non-European ancestry may not present with similar
features [26]. Thus, infants from underrepresented and underserved
populations may be less likely to be identified for GS.

Next, GS needs to be clinically available and approved. While
neonatal intensive care occurs across a range of settings (e.g., rural
and urban, community and academic), GS is mainly available at
large academic referral centers that have the resources and
expertise to sustainably carry out this process. Infants at
community and/or rural NICUs where GS is unavailable may
receive limited or no genetic workup or be transferred to referral
centers for comprehensive genetic workup, which may impose
additional burdens on families and costs to the healthcare system.
At NICUs where GS is available, approval for testing is often
required from an institutional committee and/or insurer. The
presentation of a genetic disorder in a neonate may be
nonspecific and difficult to discriminate from other causes of
critical illness, and as noted above, may be more difficult to
recognize in infants underrepresented in dysmorphology atlases.
Thus, GS requests for infants from underrepresented populations
may be less likely to be submitted to or approved by institutional
committees. In addition, insurer approval remains a barrier, which
may be exacerbated for infants with lower household income and
public (Medicaid) insurance [27, 28].

Before ordering GS, a provider needs to consent and provide
pre-test counseling to the infant’s family. This is often done by
clinical geneticists or GCs, where available, and non-genetics
providers (NGPs) may be uncomfortable with this process.
Furthermore, racial and ethnic minority families may be more
likely to have mistrust in genetic testing and/or the healthcare
system due to systemic racism and historical injustices, as well as
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= NICU “GS champions”

= “Send out” of GS tests to CLIA-
certified facilities

=  Virtual genomic medicine
platforms with “genetics consults”

Development
of
Infrastructure

Education of
Non-
Genetics
Providers

Recruitment of
Underrepresented
Populations

= Virtual genomic
medicine education

= NICU-specific GS
decision support tools

=  Recruitment diversity targets
= Engagement with families to explore
potential recruitment barriers

Fig.2 Recommendations to advance equitable access to genomic
medicine in neonatal intensive care units. We highlight three key
recommendations for research efforts to overcome barriers: recruit-
ment of underrepresented populations, education of NGPs to
empower practice of genomic medicine, and development of
innovative infrastructure to implement genomic medicine across
diverse settings.

have language, literacy, cultural, and additional barriers to consent
[29]. If the family consents, samples need to be collected and
shipped to the sequencing laboratory. In the NICU, the infant
sample is relatively easy to collect, but parental samples, which
improve results interpretation, may be harder to collect for
families who have transportation, childcare, work and/or other
barriers that may limit visitation.

In the US, a Clinical Laboratory Improvement Amendments
(CLIA) certified laboratory performs sequencing and analysis
based on standardized diagnostic criteria [30], and rapid GS
results are usually reported in <1-2 weeks. Although race and
ethnicity are socially, not genetically, defined constructs, studies
have reported that racial and ethnic minority infants may be more
likely to have GS results that require additional interpretation or to
receive nondiagnostic GS results [31, 32]. This may be in part due
to the underrepresentation of non-European individuals in genetic
variant databases leading to greater difficulty interpreting results
for the subset of racial and ethnic minority infants of non-
European ancestry [29, 31]. NGPs may also be uncomfortable with
results return and post-test counseling, including making manage-
ment changes based on the results, again limiting GS utilization
outside of centers where clinical geneticists and/or GCs are
available. Finally, identified genetic diagnoses often require
complex follow up after NICU discharge by clinical geneticists
and additional subspecialists, which may be difficult for families
from underserved populations to access [33].

RECOMMENDATIONS FOR EQUITABLE ACCESS IN NICUS
Defining and demonstrating the utility of GS in NICUs is an
important ongoing research effort and provides evidence for
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institutional and insurer policies, which is necessary for achieving
equitable access to these tests. Project Baby Bear provides an
informative example: the study enrolled critically ill infants who
were Medi-Cal beneficiaries (California’s Medicaid program),
performed payer-funded rapid GS, and reported that GS led to
changes in management and reduced healthcare costs [16].
Subsequently, the California government passed a bill to provide
money to reimburse rapid GS in Medicaid-covered infants in 2022
[2].

In addition, we need to consciously build up research efforts
focused on overcoming the many other barriers to equitable
access to genomic medicine in NICUs. In the short-term, such
efforts will provide urgently needed access to GS for critically ill
infants who may otherwise not have access, and in the long term,
will identify strategies for sustainable implementation of genomic
medicine across diverse NICU settings. We recommend the
following (Fig. 2).

Recruitment of underrepresented populations

Racial and ethnic minority participants are historically under-
represented in genomics research and populations of non-
European ancestry are underrepresented in genetic variant
databases [34, 35]. GS studies of critically ill infants have
traditionally recruited from large academic referral centers and
some initial studies did not report the racial and ethnic
distribution of participants [36-38]. Recent studies have reported
enrolling mostly infants from underserved populations (Project
Baby Bear [16]) and infants with racial and ethnic distribution
reflective of the US population (NICUSeq [39]). Future studies need
to set recruitment diversity targets—the Clinical Sequencing
Evidence-Generating Research Consortium (CSER) studies com-
mitted to at least 60% of participants being of non-European
ancestry or from underserved areas—which will require recruit-
ment from community and/or rural NICUs historically under-
represented in genomics research (ongoing CSER SouthSeq [31]
and VIGOR [Virtual Genome Center for Infant Health] studies,
clinicaltrials.gov IDs NCT03842995 and NCT05205356). Studies
need to evaluate education and communication strategies for
families with literacy, language, cultural, and other barriers that
disproportionately impact racial and ethnic minority and under-
served populations and engage with these families to understand
their attitudes toward GS and build trust in genomic medicine
during early interactions with the pediatric healthcare system.
One-on-one interviews and focus groups, using certified inter-
preters for families with limited English proficiency and using plain
language especially for families with lower health literacy, can be
used to explore potential recruitment barriers, including the
ethical, legal, and social implications of GS in these populations. It
is important to understand how racial and ethnic minority
populations who have been subjected to systemic racism and
historical medical exploitation may feel about participating in GS
studies, including providing samples for GS and sharing sequen-
cing data with researchers and/or clinicians. Findings can be used
to optimize study design and materials; for example, recruitment
materials can be refined to better address recurrently brought up
concerns and counseling materials can be adapted to use
examples that resonate with the participant population. The
ongoing SouthSeq study used diversity studios and literacy
experts to optimize study materials for participants; 73% were
non-white or from underserved areas [29].

Education of NGPs

Given limited availability of clinical geneticists and GCs and
reported discomfort with genomic medicine among NGPs, studies
need to provide education on genomic medicine to NGPs and
evaluate subsequent comfort with the genomic medicine process,
including identifying appropriate infants for GS, consenting
families, and returning results to families (ongoing SouthSeq
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and VIGOR studies). Given the many demands on neonatal
providers, education can be provided via virtual platforms that
allow for asynchronous learning. To lower cognitive burden, GS
decision support tools that NGPs can use in real time in the NICU
can be developed and adapted to provide NICU-specific GS
workflows. These can range from “big picture” criteria for when to
consider GS in the NICU population to “little details” steps on
consenting parents, ordering and collecting GS samples in a
specific NICU system, and returning the different types of GS
results (e.g., positive result, negative result, secondary finding,
variant of uncertain significance). Preliminary results from South-
Seq, which randomized return of GS results to families by GCs or
NGPs, demonstrated that NGPs reported increased confidence in
interpreting results and managing care based on results after
receiving education and training [40].

Development of infrastructure

Studies need to implement innovative infrastructure like virtual
genomic medicine platforms and NICU “GS champions”, which
have the potential to provide genomics education and expertise
to NGPs and patients outside of large academic referral centers. As
suggested by early implementation studies [41, 42], a NICU “GS
champion”—for example, a NGP who has received basic educa-
tion in genomic medicine and is passionate about GS—can assist
in identifying appropriate infants for GS and consenting parents.
For most centers, “in center” GS may not be feasible; rather,
providers can order GS and send out the patient, and where
available, parent samples to a CLIA-certified vendor who can
rapidly perform, analyze, and provide initial interpretation of GS.
Subsequently, providers receive a GS report and can return results
to families. Depending on provider comfort and availability of
center clinical geneticists or GCs, the NICU “GS champion” and/or
virtual consulting genetics professionals can assist with consent
and/or return of results as needed. Ideally, NGPs will gain comfort
with the GS process and need to utilize virtual genetics
professionals less over time for consent and initial return of
results. The COVID-19 pandemic expanded the use of virtual
medicine, which provides an opportunity to keep infants in the
NICUs where they routinely receive care, removing cost and time
barriers for families when infants are transferred, and ideally
empowering NGPs who have developed trusting relationships
with families to provide genomic care (ongoing VIGOR study). It
will be critical to rigorously evaluate implementing these
infrastructures using equity-focused methodology to identify
strategies for sustainable genomic care after research studies end.

CONCLUSIONS

Genomic medicine is a powerful diagnostic tool in NICUs, but a
large gap exists between the research setting, where a critically ill
infant can be diagnosed in less than a day using the newest
technologies [43], and “real world” clinical care, where many
critically ill infants, and disproportionally racial and ethnic minority
infants, do not have access to GS. There is an urgent need to
implement equitable access to genomic medicine for critically ill
infants, and we highlight three key recommendations for research
efforts to overcome barriers: recruitment of underrepresented
populations, education of NGPs to empower practice of genomic
medicine, and development of innovative infrastructure to
implement genomic medicine across diverse settings. These
efforts have the potential to address inequities at the earliest
stages of life and impact health outcomes. However, this potential
can only be realized with sustained access to GS after research
studies end and to follow up care, which will require institutional
and insurer recognition of the utility of genomic medicine and
continued efforts to overcome barriers to inequitable access to
pediatric healthcare more broadly.
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