Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinopathy of prematurity: risk stratification by gestational age

Abstract

Objective

To identify gestational age (GA) specific risk factors for severe ROP (sROP).

Study design

Single-center cohort stratified by GA into <24 weeks, 24–26 weeks and ≥27 weeks.

Results

132/1106 (11.9%) developed sROP. Time to full feeds was the only risk factor [HR 1.003 (1.001–1.006), p = 0.04] for infants<24 weeks GA. For infants 24–26 weeks GA, a higher GA was protective [HR 0.66 (0.51–0.85), p < 0.01], whereas steroids for bronchopulmonary dysplasia (BPD) [HR 2.21 (1.28–3.26), p < 0.01], patent ductus arteriosus (PDA) ligation [HR 1.99 (1.25–3.11), p < 0.01] and use of nitric oxide [HR 1.96 (1.11–3.30), p = 0.01] increased the hazard of sROP. Increasing birthweight was protective [HR 0.70 (0.54–0.89), p < 0.01] in infants ≥27 weeks GA. Cumulative hazard of sROP reached 1.0 by fifteen weeks for <24 weeks GA, 0.4 by twenty weeks for 24–26 weeks GA, and 0.05 by twenty weeks after birth for ≥27 weeks GA.

Conclusions

Risk factors, cumulative hazard, and time to sROP vary by GA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cumulative hazard rate of sROP, risk stratified by gestational age. Lines represent GA vs. full cohort.

Similar content being viewed by others

Data availability

Sharing of local data generated for this study is subject to rules per institutional review board.

References

  1. Tsai AS, Chou HD, Ling XC, Al-Khaled T, Valikodath N, Cole E, et al. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF). Prog Retin Eye Res. 2021;88:101018.

    Article  PubMed  Google Scholar 

  2. Hartnett ME. Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol. 2017;62:257–76.

    Article  PubMed  Google Scholar 

  3. Ludwig CA, Chen TA, Hernandez-Boussard T, Moshfeghi AA, Moshfeghi DM. The Epidemiology of retinopathy of prematurity in the United States. Ophthalmic Surg Lasers Imaging Retin. 2017;48:553–62.

    Article  Google Scholar 

  4. Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013;74(Suppl 1):35–49.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bahmani T, Karimi A, Rezaei N, Daliri S. Retinopathy prematurity: a systematic review and meta-analysis study based on neonatal and maternal risk factors. J Matern Fetal Neonatal Med. 2021;35:1–19.

  6. Bowe T, Nyamai L, Ademola-Popoola D, Amphornphruet A, Anzures R, Cernichiaro-Espinosa LA, et al. The current state of retinopathy of prematurity in India, Kenya, Mexico, Nigeria, Philippines, Romania, Thailand, and Venezuela. Digit J Ophthalmol. 2019;25:49–58.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Darlow BA, Gilbert C. Retinopathy of prematurity—A world update. Semin Perinatol. 2019;43:315–6.

    Article  PubMed  Google Scholar 

  8. Slidsborg C, Jensen A, Forman JL, Rasmussen S, Bangsgaard R, Fledelius HC, et al. Neonatal risk factors for treatment-demanding retinopathy of prematurity: a Danish National Study. Ophthalmology 2016;123:796–803.

    Article  PubMed  Google Scholar 

  9. Seiberth V, Linderkamp O. Risk factors in retinopathy of prematurity. a multivariate statistical analysis. Ophthalmologica 2000;214:131–5.

    Article  CAS  PubMed  Google Scholar 

  10. Kim SJ, Port AD, Swan R, Campbell JP, Chan RVP, Chiang MF. Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv Ophthalmol. 2018;63:618–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hagadorn JI, Richardson DK, Schmid CH, Cole CH. Cumulative illness severity and progression from moderate to severe retinopathy of prematurity. J Perinatol. 2007;27:502–9.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas K, Shah PS, Canning R, Harrison A, Lee SK, Dow KE. Retinopathy of prematurity: Risk factors and variability in Canadian neonatal intensive care units. J Neonatal Perinat Med. 2015;8:207–14.

    Article  CAS  Google Scholar 

  13. Enomoto H, Miki A, Matsumiya W, Honda S. Evaluation of oxygen supplementation status as a risk factor associated with the development of severe retinopathy of prematurity. Ophthalmologica 2015;234:135–8.

    Article  CAS  PubMed  Google Scholar 

  14. Yau GS, Lee JW, Tam VT, Liu CC, Yip S, Cheng E, et al. Incidence and risk factors of retinopathy of prematurity from 2 neonatal intensive care units in a Hong Kong Chinese population. Asia Pac J Ophthalmol (Philos). 2016;5:185–91.

    Article  Google Scholar 

  15. Lad EM, Hernandez-Boussard T, Morton JM, Moshfeghi DM. Incidence of retinopathy of prematurity in the United States: 1997 through 2005. Am J Ophthalmol. 2009;148:451–8.

    Article  PubMed  Google Scholar 

  16. Fierson WM, Chiang MF, Good W, Phelps D, Reynolds J, Robbins SL, et al. Screening examination of premature infants for retinopathy of prematurity. Pediatrics 2018;142:e20183061.

    Article  PubMed  Google Scholar 

  17. Early Treatment For Retinopathy Of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol. 2003;121:1684–94.

  18. Pivodic A, Hard AL, Lofqvist C, Smith LEH, Wu C, Brunder MC, et al. Individual risk prediction for sight-threatening retinopathy of prematurity using birth characteristics. JAMA Ophthalmol. 2020;138:21–9.

    Article  PubMed  Google Scholar 

  19. Schaffer DB, Palmer EA, Plotsky DF, Metz HS, Flynn JT, Tung B, et al. Prognostic factors in the natural course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 1993;100:230–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ying GS, Quinn GE, Wade KC, Repka MX, Baumritter A, Daniel E, et al. Predictors for the development of referral-warranted retinopathy of prematurity in the telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study. JAMA Ophthalmol. 2015;133:304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Walsh MC, Yao Q, Horbar JD, Carpenter JH, Lee SK, Ohlsson A. Changes in the use of postnatal steroids for bronchopulmonary dysplasia in 3 large neonatal networks. Pediatrics 2006;118:e1328–35.

    Article  PubMed  Google Scholar 

  22. Watterberg KL. American Academy of Pediatrics. Committee on F, Newborn. Policy statement-postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics 2010;126:800–8.

    Article  PubMed  Google Scholar 

  23. Movsas TZ, Spitzer AR, Gewolb IH. Postnatal corticosteroids and risk of retinopathy of prematurity. J AAPOS. 2016;20:348–52.

    Article  PubMed  Google Scholar 

  24. Rao R, Mashburn CB, Mao J, Wadhwa N, Smith GM, Desai NS. Brain-derived neurotrophic factor in infants <32 weeks gestational age: correlation with antenatal factors and postnatal outcomes. Pediatr Res. 2009;65:548–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wickramasinghe LC, Lau M, Deliyanti D, Gottschalk TA, van Wijngaarden P, Talia D, et al. Lung and eye disease develop concurrently in supplemental oxygen-exposed neonatal mice. Am J Pathol. 2020;190:1801–12.

    Article  CAS  PubMed  Google Scholar 

  26. Wickramasinghe LC, van Wijngaarden P, Johnson C, Tsantikos E, Hibbs ML. An experimental model of bronchopulmonary dysplasia features long-term retinal and pulmonary defects but not sustained lung inflammation. Front Pediatr. 2021;9:689699.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gorenflo M, Vogel M, Obladen M. Pulmonary vascular changes in bronchopulmonary dysplasia: a clinicopathologic correlation in short- and long-term survivors. Pediatr Pathol. 1991;11:851–66.

    Article  CAS  PubMed  Google Scholar 

  28. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164:1971–80.

    Article  CAS  PubMed  Google Scholar 

  29. Kabra NS, Schmidt B, Roberts RS, Doyle LW, Papile L, Fanaroff A, et al. Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the Trial of Indomethacin Prophylaxis in Preterms. J Pediatr. 2007;150:229–34. 34 e1.

    Article  CAS  PubMed  Google Scholar 

  30. Sathanandam S, Gutfinger D, Morray B, Berman D, Gillespie M, Forbes T, et al. Consensus Guidelines for the Prevention and Management of Periprocedural Complications of Transcatheter Patent Ductus Arteriosus Closure with the Amplatzer Piccolo Occluder in Extremely Low Birth Weight Infants. Pediatr Cardiol. 2021;42:1258–74.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Feng Y, Zhou XG, Pan JJ, Zhou XY. Inhaled nitric oxide in preterm infants: An updated meta-analysis. J Res Med Sci. 2016;21:41.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goldstein IM, Ostwald P, Roth S. Nitric oxide: a review of its role in retinal function and disease. Vis Res. 1996;36:2979–94.

    Article  CAS  PubMed  Google Scholar 

  33. Roberts JD Jr, Fineman JR, Morin FC 3rd, Shaul PW, Rimar S, Schreiber MD, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N. Engl J Med. 1997;336:605–10.

    Article  CAS  PubMed  Google Scholar 

  34. Thoene M, Anderson-Berry A. Early enteral feeding in preterm infants: a narrative review of the nutritional, metabolic, and developmental benefits. Nutrients 2021;13:2289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennedy KA, Tyson JE, Chamnanvanikij S. Early versus delayed initiation of progressive enteral feedings for parenterally fed low birth weight or preterm infants. Cochrane Database Syst Rev. 2000;2:CD001970.

    Google Scholar 

  36. Konnikova Y, Zaman MM, Makda M, D’Onofrio D, Freedman SD, Martin CR. Late enteral feedings are associated with intestinal inflammation and adverse neonatal outcomes. PLoS One. 2015;10:e0132924.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sood BG, Madan A, Saha S, Schendel D, Thorsen P, Skogstrand K, et al. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res. 2010;67:394–400.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wallace DK, Kylstra JA, Phillips SJ, Hall JG. Poor postnatal weight gain: a risk factor for severe retinopathy of prematurity. J AAPOS. 2000;4:343–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lofqvist C, Andersson E, Sigurdsson J, Engstrom E, Hard AL, Niklasson A, et al. Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol. 2006;124:1711–8.

    Article  PubMed  Google Scholar 

  40. Hellstrom A, Engstrom E, Hard AL, Albertsson-Wikland K, Carlsson B, Niklasson A, et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003;112:1016–20.

    Article  PubMed  Google Scholar 

  41. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA. 2001;98:5804–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu Z, Yan W, Chen CT, Nilsson AK, Bull E, Allen W, et al. Omega-3/Omega-6 long-chain fatty acid imbalance in Phase I Retinopathy of prematurity. Nutrients 2022;14:1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hellstrom A, Pivodic A, Granse L, Lundgren P, Sjobom U, Nilsson AK, et al. Association of Docosahexaenoic Acid and Arachidonic Acid serum levels with retinopathy of prematurity in preterm infants. JAMA Netw Open. 2021;4:e2128771.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hellstrom A, Nilsson AK, Wackernagel D, Pivodic A, Vanpee M, Sjobom U, et al. Effect of enteral lipid supplement on severe retinopathy of prematurity: a randomized clinical trial. JAMA Pediatr. 2021;175:359–67.

    Article  PubMed  Google Scholar 

  45. Berrocal AM, Fan KC, Al-Khersan H, Negron CI, Murray T. Retinopathy of prematurity: advances in the screening and treatment of retinopathy of prematurity using a single center approach. Am J Ophthalmol. 2022;233:189–215.

    Article  PubMed  Google Scholar 

  46. Bas AY, Demirel N, Koc E, Ulubas Isik D, Hirfanoglu IM, Tunc T, et al. Incidence, risk factors and severity of retinopathy of prematurity in Turkey (TR-ROP study): a prospective, multicentre study in 69 neonatal intensive care units. Br J Ophthalmol. 2018;102:1711–6.

    Article  PubMed  Google Scholar 

  47. McCourt EA, Ying GS, Lynch AM, Palestine AG, Wagner BD, Wymore E, et al. Validation of the colorado retinopathy of prematurity screening model. JAMA Ophthalmol. 2018;136:409–16.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Binenbaum G, Bell EF, Donohue P, Quinn G, Shaffer J, Tomlinson LA, et al. Development of modified screening criteria for retinopathy of prematurity: primary results from the postnatal growth and retinopathy of prematurity study. JAMA Ophthalmol. 2018;136:1034–40.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Quinn GE, Ying GS, Bell EF, Donohue PK, Morrison D, Tomlinson LA, et al. Incidence and early course of retinopathy of prematurity: secondary analysis of the postnatal Growth and Retinopathy of Prematurity (G-ROP) Study. JAMA Ophthalmol. 2018;136:1383–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank data coordinators Amy Distler, RN and Gina Myers, RN for their help in data collection, and Dr Neeta Vachharajani for statistical support.

Funding

None This research was supported by an unrestricted grant from Research to Prevent Blindness (MR).

Author information

Authors and Affiliations

Authors

Contributions

Drs. Reynolds, Rao and Ms. GU had full access to all data in the study and take full responsibility for the integrity of the data and the accuracy of the analyses. Concept and design: TW, RR, HG, MR, AL Data acquisition, analyses and interpretation; TW, HG, RR, MR Drafting of manuscript: HW, MR, RR Critical revision of manuscript: HW, MR, RR, AL, HG Statistical analyses: HG, RR, MR Supervision: MR, RR All authors were involved in reviewing, revising and approving the final manuscript for submission.

Corresponding author

Correspondence to Rakesh Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Rao, R., Gu, H. et al. Retinopathy of prematurity: risk stratification by gestational age. J Perinatol 43, 694–701 (2023). https://doi.org/10.1038/s41372-023-01604-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01604-9

Search

Quick links