Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of furosemide and fluid management for a hemodynamically significant patent ductus arteriosus in premature infants

Abstract

A patent ductus arteriosus (PDA) in infants born premature can present significant management challenges for neonatal providers. Quantifying a hemodynamically significant PDA (hsPDA) represents the first hurdle, however, identifying the best evidence-based approach amongst conservative, pharmacologic, and/or interventional management options has proven to be even more complicated. Within the conservative arm, furosemide to reduce pulmonary edema and improve lung function has spawned several discussions given the concerns for its upregulation of prostaglandin E2 in the kidneys and conflicting outcomes data. There remains no consensus regarding furosemide use in hsPDAs. In this perspective article, we summarize the approach to defining a hsPDA, review the current practice of furosemide use in the management of hsPDA, and suggest an approach to fluid management and diuresis to address the question: is the routine use of furosemide in hsPDA merited in current practice?

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Effect of furosemide on prostaglandin secretion in the kidneys.

References

  1. Hamrick SEG, Sallmon H, Rose AT, Porras D, Shelton EL, Reese J, et al. Patent ductus arteriosus of the preterm infant. Pediatrics. 2020;146:1–15.

  2. Hundscheid T, El-Khuffash A, McNamara PJ, de Boode WP. Survey highlighting the lack of consensus on diagnosis and treatment of patent ductus arteriosus in prematurity. Eur J Pediatr. 2022;181:2459–68.

  3. Prescott S, Keim-Malpass J. Patent ductus arteriosus in the preterm infant: diagnostic and treatment options. Adv Neonatal Care. 2017;17:10–18.

    Article  PubMed  Google Scholar 

  4. de Klerk JCA, Engbers AGJ, van Beek F, Flint RB, Reiss IKM, Völler S, et al. Spontaneous closure of the ductus arteriosus in preterm infants: a systematic review. Front Pediatr. 2020;8:541.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smith A, McNamara PJ, El-Khuffash AF. Non-pharmacological management of a hemodynamically significant patent ductus arteriosus. Semin Fetal Neonatal Med. 2018;23:245–9.

    Article  CAS  PubMed  Google Scholar 

  6. El-Khuffash A, Levy PT, Gorenflo M, Frantz ID 3rd. The definition of a hemodynamically significant ductus arteriosus. Pediatr Res. 2019;85:740–1.

    Article  PubMed  Google Scholar 

  7. Smith A, El-Khuffash AF. Defining “haemodynamic significance” of the patent ductus arteriosus: do we have all the answers? Neonatology. 2020;117:225–32.

    Article  PubMed  Google Scholar 

  8. Hundscheid T, Jansen EJS, Onland W, Kooi EMW, Andriessen P, de Boode WP. Conservative management of patent ductus arteriosus in preterm infants-a systematic review and meta-analyses assessing differences in outcome measures between randomized controlled trials and cohort studies. Front Pediatr. 2021;9:626261.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Altit G, Saeed S, Beltempo M, Claveau M, Lapointe A, Basso O. Outcomes of extremely premature infants comparing patent ductus arteriosus management approaches. J Pediatr. 2021;235:49–57.e42.

    Article  PubMed  Google Scholar 

  10. Semberova J, Sirc J, Miletin J, Kucera J, Berka I, Sebkova S, et al. Spontaneous closure of patent ductus arteriosus in infants ≤1500 g. Pediatrics. 2017;140:1–8.

  11. de Carvalho Nunes G, Wutthigate P, Simoneau J, Beltempo M, Sant’Anna GM, Altit G. Natural evolution of the patent ductus arteriosus in the extremely premature newborn and respiratory outcomes. J Perinatol. 2022;42:642–8.

    Article  PubMed  Google Scholar 

  12. Green TP, Thompson TR, Johnson D, Lock JE. Furosemide use in premature infants and appearance of patent ductus arteriosus. Am J Dis Child. 1981;135:239–43.

    CAS  PubMed  Google Scholar 

  13. Green TP, Johnson DE, Bass JL, Landrum BG, Ferrara TB, Thompson TR. Prophylactic furosemide in severe respiratory distress syndrome: blinded prospective study. J Pediatr. 1988;112:605–12.

    Article  CAS  PubMed  Google Scholar 

  14. Green TP, Thompson TR, Johnson DE, Lock JE. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N Engl J Med. 1983;308:743–8.

    Article  CAS  PubMed  Google Scholar 

  15. Stephens BE, Gargus RA, Walden RV, Mance M, Nye J, McKinley L, et al. Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J Perinatol. 2008;28:123–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2014;2014:Cd000503.

    PubMed  PubMed Central  Google Scholar 

  17. De Buyst J, Rakza T, Pennaforte T, Johansson AB, Storme L. Hemodynamic effects of fluid restriction in preterm infants with significant patent ductus arteriosus. J Pediatr. 2012;161:404–8.

    Article  PubMed  Google Scholar 

  18. Hansson L, Lind T, Wiklund U, Öhlund I, Rydberg A. Fluid restriction negatively affects energy intake and growth in very low birthweight infants with haemodynamically significant patent ductus arteriosus. Acta Paediatr. 2019;108:1985–92.

    Article  CAS  PubMed  Google Scholar 

  19. <Management of the patent ductus arteriosus in preterm infants_Canadian Paediatric Society.pdf>.

  20. Iacobelli S, Lorrain S, Gouyon B, Gambacorta S, Laforgia N, Gouyon JB, et al. Drug exposure for PDA closure in France: a prospective, cohort-based, analysis. Eur J Clin Pharm. 2020;76:1765–72.

    Article  CAS  Google Scholar 

  21. Pacifici GM. Clinical pharmacology of furosemide in neonates: a review. Pharmacology. 2013;6:1094–129.

    Google Scholar 

  22. Sulyok E, Varga F, Németh M, Tényi I, Csaba IF, Ertl T, et al. Furosemide-induced alterations in the electrolyte status, the function of renin-angiotensin-aldosterone system, and the urinary excretion of prostaglandins in newborn infants. Pediatr Res. 1980;14:765–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mann B, Hartner A, Jensen BL, Kammerl M, Krämer BK, Kurtz A. Furosemide stimulates macula densa cyclooxygenase-2 expression in rats. Kidney Int. 2001;59:62–68.

    Article  CAS  PubMed  Google Scholar 

  24. Crossley KJ, Allison BJ, Polglase GR, Morley CJ, Davis PG, Hooper SB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol. 2009;587(Pt 19):4695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyanoshita A, Terada M, Endou H. Furosemide directly stimulates prostaglandin E2 production in the thick ascending limb of Henle’s loop. J Pharm Exp Ther. 1989;251:1155–9.

    CAS  Google Scholar 

  26. Toyoshima K, Momma K, Nakanishi T. In vivo dilatation of the ductus arteriosus induced by furosemide in the rat. Pediatr Res. 2010;67:173–6.

    Article  CAS  PubMed  Google Scholar 

  27. Olsen UB, Ahnfelt-Ronne I. Bumetanide induced increase of renal blood flow in conscious dogs and its relation to local renal hormones (PGE, kallikrein and renin). Acta Pharm Toxicol. 1976;38:219–28.

    Article  CAS  Google Scholar 

  28. Kaufman J, Hamburger R, Matheson J, Flamenbaum W. Bumetanide-induced diuresis and natriuresis: effect of prostaglandin synthetase inhibition. J Clin Pharm. 1981;21:663–7.

    Article  CAS  Google Scholar 

  29. Ellison DH. Clinical pharmacology in diuretic use. Clin J Am Soc Nephrol. 2019;14:1248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mirochnick MH, Miceli JJ, Kramer PA, Chapron DJ, Raye JR. Furosemide pharmacokinetics in very low birth weight infants. J Pediatr. 1988;112:653–7.

    Article  CAS  PubMed  Google Scholar 

  31. Tuck S, Morselli P, Broquaire M, Vert P. Plasma and urinary kinetics of furosemide in newborn infants. J Pediatr. 1983;103:481–5.

    Article  CAS  PubMed  Google Scholar 

  32. Vert P, Broquaire M, Legagneur M, Morselli PL. Pharmacokinetics of furosemide in neonates. Eur J Clin Pharm. 1982;22:39–45.

    Article  CAS  Google Scholar 

  33. Peterson RG, Simmons MA, Rumack BH, Levine RL, Brooks JG. Pharmacology of furosemide in the premature newborn infant. J Pediatr. 1980;97:139–43.

    Article  CAS  PubMed  Google Scholar 

  34. Aranda JV, Perez J, Sitar DS, Collinage J, Portuguez-Malavasi A, Duffy B, et al. Pharmacokinetic disposition and protein binding of furosemide in newborn infants. J Pediatr. 1978;93:507–11.

    Article  CAS  PubMed  Google Scholar 

  35. Reyes JL, Aldana I, Barbier O, Parrales AA, Melendez E. Indomethacin decreases furosemide-induced natriuresis and diuresis on the neonatal kidney. Pediatr Nephrol. 2006;21:1690–7.

    Article  PubMed  Google Scholar 

  36. Guignard JP, Dubourg L, Gouyon JB. Diuretics in the neonatal period. Rev Med Suisse Romand. 1995;115:583–90.

    CAS  Google Scholar 

  37. Laughon MM, Chantala K, Aliaga S, Herring AH, Hornik CP, Hughes R, et al. Diuretic exposure in premature infants from 1997 to 2011. Am J Perinatol. 2015;32:49–56.

    PubMed  Google Scholar 

  38. Ding D, Liu H, Qi W, Jiang H, Li Y, Wu X, et al. Ototoxic effects and mechanisms of loop diuretics. J Otol. 2016;11:145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jackson W, Taylor G, Selewski D, Smith PB, Tolleson-Rinehart S, Laughon MM. Association between furosemide in premature infants and sensorineural hearing loss and nephrocalcinosis: a systematic review. Matern Health Neonatol Perinatol. 2018;4:23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saarela T, Lanning P, Koivisto M, Paavilainen T. Nephrocalcinosis in full-term infants receiving furosemide treatment for congestive heart failure: a study of the incidence and 2-year follow up. Eur J Pediatr. 1999;158:668–72.

    Article  CAS  PubMed  Google Scholar 

  41. Andriessen P, Struis NC, Niemarkt H, Oetomo SB, Tanke RB, Van Overmeire B. Furosemide in preterm infants treated with indomethacin for patent ductus arteriosus. Acta Paediatr. 2009;98:797–803.

    Article  CAS  PubMed  Google Scholar 

  42. Lasix (furosemide) tablets label - Accessdata.fda.gov https://www.accessdata.fda.gov

  43. Belik J, Spitzer AR, Clark BJ, Gewitz MH, Fox WW. Effect of early furosemide administration in neonates with respiratory distress syndrome. Pediatr Pulmonol. 1987;3:219–25.

    Article  CAS  PubMed  Google Scholar 

  44. Yeh TF, Wilks A, Singh J, Betkerur M, Lilien L, Pildes RS. Furosemide prevents the renal side effects of indomethacin therapy in premature infants with patent ductus arteriosus. J Pediatr. 1982;101:433–7.

    Article  CAS  PubMed  Google Scholar 

  45. Romagnoli C, Zecca E, Papacci P, De Carolis MP, Giannini R, Gallini F, et al. Furosemide does not prevent indomethacin-induced renal side effects in preterm infants. Clin Pharm Ther. 1997;62:181–6.

    Article  CAS  Google Scholar 

  46. Lee BS, Byun SY, Chung ML, Chang JY, Kim HY, Kim EA, et al. Effect of furosemide on ductal closure and renal function in indomethacin-treated preterm infants during the early neonatal period. Neonatology. 2010;98:191–9.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson EJ, Greenberg RG, Kumar K, Laughon M, Smith PB, Clark RH, et al. Association between furosemide exposure and patent ductus arteriosus in hospitalized infants of very low birth weight. J Pediatr. 2018;199:231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ciociola EC, Kumar KR, Zimmerman KO, Thompson EJ, Harward M, Sullivan LN, et al. Association between preoperative respiratory support and outcomes in paediatric cardiac surgery. Cardiol Young. 2020;30:66–73.

    Article  PubMed  Google Scholar 

  49. North West, North Wales, Isle of Man Children’s Heart. Guideline for the management of patent ductus arteriosus (PDA). 2020 https://www.northwestchdnetwork.nhs.uk/wp-content/uploads/2021/05/GL-ODN-09-NW-Guideline-for-the-Management-of-PDA-Revised.pdf

  50. Laragh JH. The mode of action and use of chlorothiazide and related compounds. Circulation. 1962;26:121–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SD, SS, AEK, and PL conceptualized the study, shared equal writing responsibilities, edited, and approved the submission.

Corresponding author

Correspondence to Philip T. Levy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dudley, S., Sen, S., Hanson, A. et al. The role of furosemide and fluid management for a hemodynamically significant patent ductus arteriosus in premature infants. J Perinatol 42, 1703–1707 (2022). https://doi.org/10.1038/s41372-022-01450-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01450-1

Search

Quick links