Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Postnatal maximal weight loss, fluid administration, and outcomes in extremely preterm newborns

Abstract

Objective

Evaluate maximal weight loss (MWL) and total fluid administration (TFA) association in first week after birth with outcomes among extremely preterm (EP) newborns.

Study design

We performed a retrospective analysis of the Preterm Erythropoietin Neuroprotection Trial evaluating first-week MWL, TFA, and association with in-hospital outcomes.

Results

Among n = 883 included EP neonates, n = 842 survived ≥ 7 days and were included in outcome analyses. MWL between 5% to 15% was associated with decreased odds of necrotizing enterocolitis compared to MWL > 15% (OR 0.49, 95% CI 0.25–0.98). Average TFA > 150 mL/kg birthweight/day was associated with increased odds of necrotizing enterocolitis (OR 3.22, 95% CI 1.40–7.42) and patent ductus arteriosus requiring surgery (OR 2.14, 95% CI 1.10–4.15).

Conclusion

MWL between 5% to 15% is a potentially optimal window of MWL. Increasing average TFA in the first week is associated with adverse neonatal outcomes. Prospective studies evaluating MWL and TFA and relationship to outcomes in EP neonates are needed.

Clinical trial registration

This study is a secondary analysis of pre-existing data from the PENUT Trial Registration: NCT01378273, https://clinicaltrials.gov/ct2/show/NCT01378273.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Median and 10th–90th percentile weight loss trajectories after birth, depicted and analyzed by gestational age in all n = 883 infants.

References

  1. Valentine GC, Umoren R, Perez K. Early inadequate of excessive weight loss: a potential contributor to mortality in premature newborns in resource-scare settings? Pediatr Neonatol. 2021;0:237–9.

    Article  Google Scholar 

  2. Stritzke A, Thomas S, Amin H, Fusch C, Lodha A. Renal consequences of preterm birth. Mol Cell Pediatr. 2017;4:2 https://doi.org/10.1186/s40348-016-0068-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ågren G, Sjörs GSJ. Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr. 1998;87:1185–90. https://doi.org/10.1080/080352598750031194.

    Article  PubMed  Google Scholar 

  4. Hammarlund K, Sedin G, Stromberg B. Transepidermal water loss in newborn infants: VIII. Relation to gestational age and post‐natal age in appropriate and small for gestational age infants. Acta Pædiatrica. 1983;72:721–8. https://doi.org/10.1111/j.1651-2227.1983.tb09801.x.

    CAS  Article  Google Scholar 

  5. Hammarlund K, Sedin G, Stromberg B. Transepidermal water loss in newborn infants: VII. Relation to post‐natal age in very pre‐term and full‐term appropriate for gestational age infants. Acta Pædiatrica. 1982;71:369–74. https://doi.org/10.1111/j.1651-2227.1982.tb09436.x.

    CAS  Article  Google Scholar 

  6. Hammarlund K, Sedin G. Transepidermal water loss in newborn infants: III. Relation to gestational age. Acta Pædiatrica. 1979;68:795–801. https://doi.org/10.1111/j.1651-2227.1979.tb08214.x.

    CAS  Article  Google Scholar 

  7. Anchieta LM, Xavier CC, Colosimo EA, Souza MF. Weight of preterm newborns during the first twelve weeks of life. Braz J Med Biol Res. 2003;36:761–70. https://doi.org/10.1590/S0100-879X2003000600012.

    CAS  Article  PubMed  Google Scholar 

  8. Sung SI, Ahn SY, Seo HJ, Yoo HS, Han YM, Lee MS, et al. Insensible water loss during the first week of life of extremely low birth weight infants less than 25 gestational weeks under high humidification. Neonatal Med. 2013;20:51 https://doi.org/10.5385/nm.2013.20.1.51.

    Article  Google Scholar 

  9. Noel-Weiss J, Courant G, Woodend AK. Physiological weight loss in the breastfed neonate: a systematic review. Open Med. 2008;2:99.

    Google Scholar 

  10. Aksoy HT, Güzoğlu N, Eras Z, Gokce IK, Canpolat FE, Uras N, et al. The association of early postnatal weight loss with outcome in extremely low birth weight infants. Pediatr Neonatol. 2019;60:192–6. https://doi.org/10.1016/j.pedneo.2018.06.003.

    Article  PubMed  Google Scholar 

  11. Chang RJ, Chou HC, Chang YH, Chen MH, Chen CY, Hsieh WS, et al. Weight loss percentage prediction of subsequent neonatal hyperbilirubinemia in exclusively breastfed neonates. Pediatr Neonatol. 2012;53:41–44. https://doi.org/10.1016/j.pedneo.2011.11.008.

    Article  PubMed  Google Scholar 

  12. Tammela OK, Koivisto ME. Fluid restriction for preventing bronchopulmonary dysplasia? Reduced fluid intake during the first weeks of life improves the outcome of low‐birth‐weight infants. Acta Pædiatrica. 1992;81:207–12. https://doi.org/10.1111/j.1651-2227.1992.tb12205.x.

    CAS  Article  PubMed  Google Scholar 

  13. Verma RP, Shibli S, Fang H, Komaroff E. Clinical determinants and utility of early postnatal maximum weight loss in fluid management of extremely low birth weight infants. Early Hum Dev. 2009;85:59–64. https://doi.org/10.1016/j.earlhumdev.2008.06.011.

    Article  PubMed  Google Scholar 

  14. Wadhawan R, Oh W, Perritt R, Laptook AR, Poole K, Wright LL, et al. Association between early postnatal weight loss and death or BPD in small and appropriate for gestational age extremely low-birth-weight infants. J Perinatol. 2007;27:359–64. https://doi.org/10.1038/sj.jp.7211751.

    CAS  Article  PubMed  Google Scholar 

  15. Verma RP, Shibli S, Komaroff E. Postnatal transitional weight loss and adverse outcomes in extremely premature neonates. Pediatr Rep. 2017;9:6962 https://doi.org/10.4081/pr.2017.6962.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Cole TJ, Statnikov Y, Santhakumaran S, Pan H, Modi N. Birth weight and longitudinal growth in infants born below 32 weeks’ gestation: a UK population study. Arch Dis Child Fetal Neonatal Ed. 2014;99:F34–F40. https://doi.org/10.1136/archdischild-2012-303536.

    Article  PubMed  Google Scholar 

  17. Thureen P, Anderson M, Hay W. The small-for-gestational age infant. Neoreviews. 2001;2:e139–e149. https://doi.org/10.1542/neo.2-6-e139.

    Article  Google Scholar 

  18. Tonbul A, Tayman C, Karadaǧ A, Akça H, Uras N, Tatli MM. Small-for-gestational-age newborns need a special fluid therapy strategy. Turkish J Med Sci. 2010. https://doi.org/10.3906/sag-0807-20.

  19. Juul SE, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med. 2020;382:233–43. https://doi.org/10.1056/nejmoa1907423.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Juul SE, Mayock DE, Comstock BA, Heagerty PJ. Neuroprotective potential of erythropoietin in neonates; design of a randomized trial. Matern Heal Neonatol Perinatol. 2015;1:27 https://doi.org/10.1186/s40748-015-0028-z.

    Article  Google Scholar 

  21. Zeger SL, Liang K-Y, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988;44:1049 https://doi.org/10.2307/2531734.

    CAS  Article  PubMed  Google Scholar 

  22. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34. https://doi.org/10.1016/S0022-3476(78)80282-0.

    CAS  Article  PubMed  Google Scholar 

  23. Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am. 1986;33:179–201. https://doi.org/10.1016/S0031-3955(16)34975-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1–7. https://doi.org/10.1097/00000658-197801000-00001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants an evidence-based approach. Am J Respir Crit Care Med. 2019;200:751–9. https://doi.org/10.1164/rccm.201812-2348OC.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Huber PJ, Ronchetti EM. Wiley series in probability and statistics. Robust Stat Second Ed. 2009;121:800 https://doi.org/10.1002/9780470434697.

    Article  Google Scholar 

  27. Tukey J. The future of data analysis. Ann Math Stat. 1962;33:1–67. https://doi.org/10.1214/aoms/1177704711.

    Article  Google Scholar 

  28. R Core Team. R: A language and environment for statistical computing. R Found Stat Comput. Vienna, Austria, 2019. https://www.R-project.org/.

  29. Wright CM, Parkinson KN. Postnatal weight loss in term infants: What is “normal” and do growth charts allow for it? Arch Dis Child Fetal Neonatal Ed. 2004;89:F254–F257. https://doi.org/10.1136/adc.2003.026906.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Papageorghiou AT, Kennedy SH, Salomon LJ, Altman DG, Ohuma EO, Stones W, et al. The INTERGROWTH-21 st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol. 2018;218:S630–S640. https://doi.org/10.1016/j.ajog.2018.01.011.

    Article  PubMed  Google Scholar 

  31. Tuzun F, Yucesoy E, Baysal B, Kumral A, Duman N, Ozkan H. Comparison of INTERGROWTH-21 and Fenton growth standards to assess size at birth and extrauterine growth in very preterm infants. J Matern Neonatal Med. 2018;31:2252–7. https://doi.org/10.1080/14767058.2017.1339270.

    Article  Google Scholar 

  32. Villar J, Ismail LC, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014;384:857–68. https://doi.org/10.1016/s0140-6736(14)60932-6.

    Article  PubMed  Google Scholar 

  33. Clark RH, Olsen IE. Do we need another set of growth charts for premature infants? Pediatrics. 2016, 138. https://doi.org/10.1542/peds.2016-3128.

  34. Verma R, Shibly S, Fang H, Pollack S. Do early postnatal body weight changes contribute to neonatal morbidities in the extremely low birth weight infants. J Neonatal Perinat Med. 2015;8:113–8. https://doi.org/10.3233/NPM-15814104.

    CAS  Article  Google Scholar 

  35. Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA, et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr. 2005;147:786–90. https://doi.org/10.1016/j.jpeds.2005.06.039.

    Article  PubMed  Google Scholar 

  36. Bauer K, Cowett RM, Howard GM, vanEpp J, Oh W. Effect of intrauterine growth retardation on postnatal weight change in preterm infants. J Pediatr. 1993;123:301–6. https://doi.org/10.1016/S0022-3476(05)81707-X.

    CAS  Article  PubMed  Google Scholar 

  37. Senterre T, Rigo J. Optimizing early nutritional support based on recent recommendations in vlbw infants and postnatal growth restriction. J Pediatr Gastroenterol Nutr. 2011;53:536–42. https://doi.org/10.1097/MPG.0b013e31822a009d.

    CAS  Article  PubMed  Google Scholar 

  38. Perrem L, Semberova J, O’Sullivan A, Kieran E, O’Donnell C, White MJ, et al. Effect of early parenteral nutrition discontinuation on time to regain birth weight in very low birth weight infants: a randomized controlled trial. J Parenter Enter Nutr. 2019;43:883–90. https://doi.org/10.1002/jpen.1502.

    CAS  Article  Google Scholar 

  39. Paul IM, Schaefer EW, Miller JR, Kuzniewicz MW, Li SX, Walsh EM, et al. Weight change nomograms for the first month after birth. Pediatrics. 2016, 138. https://doi.org/10.1542/peds.2016-2625.

  40. Gao C, Ehsan L, Jones M, Khan M, Middleton J, Vergales B, et al. Time to regain birth weight predicts neonatal growth velocity: a single-center experience. Clin Nutr ESPEN. 2020;38:165–71. https://doi.org/10.1016/j.clnesp.2020.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Flaherman VJ, Schaefer EW, Kuzniewicz MW, Li SX, Walsh EM, Paul IM. Early weight loss nomograms for exclusively breastfed newborns. Pediatrics. 2015;135:e16–e23. https://doi.org/10.1542/peds.2014-1532.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kelly NM, Keane JV, Gallimore RB, Bick D, Tribe RM. Neonatal weight loss and gain patterns in caesarean section born infants: integrative systematic review. Matern Child Nutr. 2020;16:12914 https://doi.org/10.1111/mcn.12914.

    Article  Google Scholar 

  43. Stephens BE, Gargus RA, Walden RV, Mance M, Nye J, McKinley L, et al. Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J Perinatol. 2008;28:123–8. https://doi.org/10.1038/sj.jp.7211895.

    CAS  Article  PubMed  Google Scholar 

  44. Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146:R151–R162. https://doi.org/10.1530/REP-13-0232.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345:760–5. https://doi.org/10.1126/science.1251816.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Sun X, Guo JH, Zhang D, Chen J, Lin W, Huang Y, et al. Activation of the epithelial sodium channel (EN aC) leads to cytokine profile shift to pro‐inflammatory in labor. EMBO Mol Med. 2018, 10. https://doi.org/10.15252/emmm.201808868.

  47. Katz C, Bentur L, Elias N. Clinical implication of lung fluid balance in the perinatal period. J Perinatol. 2011;31:230–5. https://doi.org/10.1038/jp.2010.134.

    CAS  Article  PubMed  Google Scholar 

  48. Soullane S, Patel S, Claveau M, Wazneh L, Sant’Anna G, Beltempo M. Fluid status in the first 10 days of life and death/bronchopulmonary dysplasia among preterm infants. Pediatr Res. 2021;90:353–8. https://doi.org/10.1038/s41390-021-01485-8.

    CAS  Article  PubMed  Google Scholar 

  49. Guo MMH, Chung CH, Chen FS, Chen CC, Huang HC, Chung MY. Severe bronchopulmonary dysplasia is associated with higher fluid intake in very low-birth-weight infants: A retrospective study. Am J Perinatol. 2015;30:155–62. https://doi.org/10.1055/s-0034-1376393.

    Article  PubMed  Google Scholar 

  50. Milanesi BG, Lima PA, Villela LD, Martins A, Gomes-Junior S, Moreira M, et al. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: a cohort study. Eur J Pediatr. 2021;180:1423–30. https://doi.org/10.1007/s00431-020-03912-0.

    CAS  Article  PubMed  Google Scholar 

  51. Al-Jebawi Y, Argawal N, Groh Wargo S, Shekhawat P, Mhanna MJ. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J Neonatal Perinat Med. 2020;13:207–14. https://doi.org/10.3233/NPM-190267.

    CAS  Article  Google Scholar 

  52. Latal-Hajnal B, Von Siebenthal K, Kovari H, Bucher HU, Largo RH. Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. J Pediatr. 2003;143:163–70. https://doi.org/10.1067/S0022-3476(03)00243-9.

    Article  PubMed  Google Scholar 

  53. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117:1253–61. https://doi.org/10.1542/peds.2005-1368.

    Article  PubMed  Google Scholar 

  54. Franz AR, Pohlandt F, Bode H, Mihatsch W, Sander S, Kron M, et al. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics. 2009;123:e101–e109. https://doi.org/10.1542/peds.2008-1352.

    Article  PubMed  Google Scholar 

  55. Anuk-Ince D, Gülcan H, Hanta D, Ecevit A, Akkoyun I, Kurt A, et al. Poor postnatal weight gain predicts stage 3+ retinopathy of prematurity in very low birth weight infants. Turk J Pediatr. 2013;55:304–8.

  56. Kim J, Jin JY, Kim SS. Postnatal weight gain in the first two weeks as a predicting factor of severe retinopathy of prematurity requiring treatment. Korean J Pediatr. 2015;58:52 https://doi.org/10.3345/kjp.2015.58.2.52.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Namiiro FB, Mugalu J, McAdams RM, Ndeezi G. Poor birth weight recovery among low birth weight/preterm infants following hospital discharge in Kampala, Uganda. BMC Pregnancy Childbirth. 2012;12:1 https://doi.org/10.1186/1471-2393-12-1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mathew G, Gupta V, Santhanam S, Rebekah G. Postnatal weight gain patterns in preterm very-low-birth-weight infants born in a tertiary care center in South India. J Trop Pediatr. 2018;64:126–31. https://doi.org/10.1093/tropej/fmx038.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the PENUT Trial participants and the PENUT Trial primary investigator, co-investigators, research coordinators, University of Washington Data Coordinating Center, PENUT Executive Committee, Follow-up Committee, and Independent Medical Monitor. Please see Supplementary Material for a full list of names.

Funding

The PENUT trial was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award numbers U01NS077953 and U01NS077955.

Author information

Authors and Affiliations

Authors

Contributions

GV and KP conceptualized the design of the secondary analysis, composed the initial draft of the manuscript, and revised its subsequent versions. TW performed the statistical analyses. TW, BC, DM, MP, PH and SJ were involved in revisions to the manuscript, and all agreed to the final draft of the manuscript being submitted.

Corresponding author

Correspondence to Gregory C. Valentine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valentine, G.C., Perez, K.M., Wood, T.R. et al. Postnatal maximal weight loss, fluid administration, and outcomes in extremely preterm newborns. J Perinatol 42, 1008–1016 (2022). https://doi.org/10.1038/s41372-022-01369-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01369-7

This article is cited by

Search

Quick links