Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Renal insufficiency in children born preterm: examining the role of neonatal acute kidney injury

Abstract

Objective

To identify the prevalence of renal insufficiency (RI) in children with a history of prematurity and acute kidney injury (AKI).

Study design

This prospective cohort study evaluated renal function in children born preterm at 5–9 years of age. Univariable analyses compared perinatal and follow-up data from subjects with and without AKI history, and with and without current RI. Regression analyses were attempted to model RI as a function of AKI and other clinical risk factors.

Results

Fifteen of 43 (35%) participants had previously undiagnosed RI. Only children with no AKI history or neonatal stage 1 AKI presented for follow-up. Children born preterm with a history of stage 1 AKI had higher serum creatinine (sCr) at follow-up, but were not more likely to have RI compared to children without stage 1 AKI history (RI prevalence 30% and 36% in AKI and non-AKI group, respectively).

Conclusion

The high prevalence of RI in this preterm cohort at middle childhood follow-up highlights the need for routine kidney health assessments in this population. Large multicenter studies are needed to further characterize the impact of premature birth and mild AKI on renal function throughout childhood.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors associated with neonatal Stage 1 AKI.
Fig. 2: Comparison of eGFR values using the full (CKiDfull) and bedside (CKiDbed) equations.
Fig. 3: Comparison of eGFR values for children with and without Stage 1 AKI history using the bedside and full CKiD equations.

References

  1. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ. 2019;365:l1346.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gjerde A, Lillås BS, Marti H-P, Reisæter AV, Vikse BE. Intrauterine growth restriction, preterm birth and risk of end-stage renal disease during the first 50 years of life. Nephrol Dial Transpl. 2020;35:1157–63.

    Article  Google Scholar 

  3. Harer MW, Pope CF, Conaway MR, Charlton JR. Follow-up of acute kidney injury in neonates during childhood years (FANCY): a prospective cohort study. Pediatr Nephrol. 2017;32:1067–76.

    Article  PubMed  Google Scholar 

  4. Bruel A, Rozé J-C, Quere M-P, Flamant C, Boivin M, Roussey-Kesler G, et al. Renal outcome in children born preterm with neonatal acute renal failure: IRENEO-a prospective controlled study. Pediatr Nephrol. 2016;31:2365–73.

    Article  PubMed  Google Scholar 

  5. Nishizaki N, Hirano D, Nishizaki Y, Fujinaga S, Nagata S, Ohtomo Y, et al. Increased urinary angiotensinogen is an effective marker of chronic renal impairment in very low birth weight children. Clin Exp Nephrol. 2014;18:642–8.

    Article  CAS  PubMed  Google Scholar 

  6. Abitbol CL, Rodriguez MM. The long-term renal and cardiovascular consequences of prematurity. Nat Rev Nephrol. 2012;8:265–74.

    Article  CAS  PubMed  Google Scholar 

  7. Faa G, Gerosa C, Fanni D, Nemolato S, Locci A, Cabras T, et al. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Fetal Neonatal Med. 2010;23:129–33.

    Article  PubMed  Google Scholar 

  8. Bonsib SM. Renal hypoplasia, from grossly insufficient to not quite enough: consideration for expanded concepts based upon the author’s perspective with historical review. Adv Anat Pathol. 2020;27:311–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7:17–25.

    Article  PubMed  Google Scholar 

  10. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mañalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 2000;58:770–3.

    Article  PubMed  Google Scholar 

  12. Koike K, Ikezumi Y, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, et al. Glomerular density and volume in renal biopsy specimens of children with proteinuria relative to preterm birth and gestational age. CJASN. 2017;12:585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hodgin JB, Rasoulpour M, Markowitz GS, D’Agati VD. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. CJASN. 2009;4:71–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013;131:1168–79.

    Article  PubMed  Google Scholar 

  15. Vashishta N, Surapaneni V, Chawla S, Kapur G, Natarajan G. Association among prematurity (<30 weeks’ gestational age), blood pressure, urinary albumin, calcium, and phosphate in early childhood. Pediatr Nephrol. 2017;32:1243–50.

    Article  PubMed  Google Scholar 

  16. Vollsæter M, Halvorsen T, Markestad T, Øymar K, Ueland PM, Meyer K, et al. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PloS ONE. 2018;13:e0205558.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, et al. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr Nephrol. 2019;34:1765–76.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sanderson KR, Chang E, Bjornstad E, Hogan SL, Hu Y, Askenazi D, et al. Albuminuria, hypertension, and reduced kidney volumes in adolescents born extremely premature. Front Pediatr. 2020;8:230.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abitbol CL, Bauer CR, Montané B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol. 2003;18:887–93.

    Article  PubMed  Google Scholar 

  20. Chaturvedi S, Ng KH, Mammen C. The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol. 2017;32:227–41.

    Article  PubMed  Google Scholar 

  21. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59:523–30.

    Article  PubMed  Google Scholar 

  22. Weintraub AS, Connors J, Carey A, Blanco V, Green RS. The spectrum of onset of acute kidney injury in premature infants less than 30 weeks gestation. J Perinatol. 2016;36:474–80.

    Article  CAS  PubMed  Google Scholar 

  23. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69:354–8.

    Article  PubMed  Google Scholar 

  24. Viswanathan S, Manyam B, Azhibekov T, Mhanna MJ. Risk factors associated with acute kidney injury in extremely low birth weight (ELBW) infants. Pediatr Nephrol. 2012;27:303–11.

    Article  PubMed  Google Scholar 

  25. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1:184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maqsood S, Fung N, Chowdhary V, Raina R, Mhanna MJ. Outcome of extremely low birth weight infants with a history of neonatal acute kidney injury. Pediatr Nephrol. 2017;32:1035–43.

    Article  PubMed  Google Scholar 

  27. Lee CC, Chan OW, Lai MY, Hsu KH, Wu TW, Lim WH, et al. Incidence and outcomes of acute kidney injury in extremely-low-birth-weight infants. PLoS ONE. 2017;12:e0187764.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shalaby MA, Sawan ZA, Nawawi E, Alsaedi S, Al-Wassia H, Kari JA. Incidence, risk factors, and outcome of neonatal acute kidney injury: a prospective cohort study. Pediatr Nephrol. 2018;33:1617–24.

    Article  PubMed  Google Scholar 

  29. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82:445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. CJASN. 2009;4:1832–43.

    Article  PubMed  Google Scholar 

  31. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carrol AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140:e20171904.

    Article  PubMed  Google Scholar 

  32. SAS Institute Inc. SAS® Studio 3.8: user’s guide [software]. Cary, NC: SAS Institute Inc.; 2018. Copyright©

  33. RStudio Team. RStudio: integrated development for R [software], Version 1.1.463. Boston, MA: RStudio, Inc; 2020. http://www.rstudio.com/.

  34. Parry G, Tucker J, Tarnow-Mordi W. CRIB II: an update of the clinical risk index for babies score. Lancet. 2003;361:1789–91.

    Article  PubMed  Google Scholar 

  35. Abraham BP, Frazier EA, Morrow WR, Blaszak RT, Devarajan P, Mitsnefes M, et al. Cystatin C and neutrophil gelatinase-associated lipocalin as markers of renal function in pediatric heart transplant recipients. Pediatr Transpl. 2011;15:564–9.

    CAS  Google Scholar 

  36. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  37. Mitsnefes MM, Kathman TS, Mishra J, Kartal J, Khoury PR, Nickolas TL, et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol. 2007;22:101–8.

    Article  PubMed  Google Scholar 

  38. Wong CJ, Moxey-Mims M, Jerry-Fluker J, Warady BA, Furth SL. CKiD (CKD in Children) Prospective Cohort Study: a review of current findings. Am J Kidney Dis. 2012;60:1002–11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zachwieja K, Korohoda P, Kwinta-Rybicka J, Miklaszewska M, Moczulska A, Bugasjka J. et al. Modification of the Schwartz equations for children increases their accuracy at eGFR > 60 mL/min/1.73. Ren Fail. 2016;38:787–98.

    Article  PubMed  Google Scholar 

  40. Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL. Pediatric GFR estimating equations applied to adolescents in the general population. CJASN. 2011;6:1427–35.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol. 2010;25:2321–6.

    Article  PubMed  Google Scholar 

  42. Bacchetta J, Cochat P, Rognant N, Ranchin B, Hadj-Aissa A, Dubourg L. Which Creatinine and Cystatin C equations can be reliably used in children? CJASN. 2011;6:552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Warady BA, Abraham AG, Schwartz GJ, Wong CS, Muñoz A, Betoko A, et al. Predictors of rapid progression of glomerular and non-glomerular kidney disease in children: the CKiD Cohort. Am J Kidney Dis. 2015;65:878–88.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD Cohort. CJASN. 2015;10:571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. JASN. 2010;21:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kelly J, Raizman JE, Bevilacqua V, Chan MK, Chen Y, Quinn F, et al. Complex reference value distributions and partitioned reference intervals across the pediatric age range for 14 specialized biochemical markers in the CALIPER cohort of healthy community children and adolescents. Clin Chim Acta. 2015;450:196–202.

    Article  CAS  PubMed  Google Scholar 

  47. Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically Ill children with septic shock. Crit Care Med. 2008;36:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  49. Bennett MR, Nehus E, Haffner C, Ma Q, Devarajan P. Pediatric reference ranges for acute kidney injury biomarkers. Pediatr Nephrol. 2015;30:677–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge The Mount Sinai Clinical Research Unit for their assistance with all aspects of the study visits and specimen processing, and The Mount Sinai Human Immune Monitoring Core Facility for their performance of the NGAL assays.

Funding

This work was supported by a grant from The Icahn School of Medicine at Mount Sinai Pediatric Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea S. Weintraub.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulju, M., Pruitt, C., Reid-Adam, J. et al. Renal insufficiency in children born preterm: examining the role of neonatal acute kidney injury. J Perinatol 41, 1432–1440 (2021). https://doi.org/10.1038/s41372-021-01097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01097-4

Search

Quick links