Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anemia of prematurity: how low is too low?

Abstract

Anemia of prematurity (AOP) is a common condition with a well-described chronology, nadir hemoglobin levels, and timeline of recovery. However, the underlying pathophysiology and impact of prolonged exposure of the developing infant to low levels of hemoglobin remains unclear. Phlebotomy losses exacerbate the gradual decline of hemoglobin levels which is insidious in presentation, often without any clinical signs. Progressive anemia in preterm infants is associated with poor weight gain, inability to take oral feeds, tachycardia and exacerbation of apneic, and bradycardic events. There remains a lack of consensus on treatment thresholds for RBC transfusion which vary considerably. This review elaborates on the current state of the problem, its implication for the premature infant including association with subphysiologic cerebral tissue oxygenation, necrotizing enterocolitis, and retinopathy of prematurity. It outlines the impact of prophylaxis and treatment of anemia of prematurity and offers suggestions on improving monitoring and management of the condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equation depicting oxygen delivery to tissues and the significant role of hemoglobin.
Fig. 2: Iron homeostasis in the neonate: hepcidin regulates iron by degradation of ferroportin (Fpn), a transmembrane glycoprotein receptor present in the duodenal enterocytes and macrophages that transport iron from inside the cell to outside the cell.

Similar content being viewed by others

References

  1. Lokeshwar MR, Singhal T, Shah N. Anemia in the newborn. Indian J Pediatr. 2003;70:893–902.

    CAS  PubMed  Google Scholar 

  2. Luban NL. Management of anemia in the newborn. Early Hum Dev. 2008;84:493–8.

    PubMed  Google Scholar 

  3. Obladen M, Sachsenweger M, Stahnke M. Blood sampling in very low birth weight infants receiving different levels of intensive care. Eur J Pediatr. 1988;147:399–404.

    CAS  PubMed  Google Scholar 

  4. Ringer SA, Richardson DK, Sacher RA, Keszler M, Churchill WH. Variations in transfusion practice in neonatal intensive care. Pediatrics. 1998;101:194–200.

    CAS  PubMed  Google Scholar 

  5. Alagappan A, Shattuck KE, Malloy MH. Impact of transfusion guidelines on neonatal transfusions. J Perinatol. 1998;18:92–97.

    CAS  PubMed  Google Scholar 

  6. Widness JA. Pathophysiology of anemia during the neonatal period, including anemia of prematurity. Neoreviews. 2008;9:e520.

    PubMed  PubMed Central  Google Scholar 

  7. Raffaeli G, Manzoni F, Cortesi V, Cavallaro G, Mosca F, Ghirardello S. Iron homeostasis disruption and oxidative stress in preterm newborns. Nutrients. 2020;12:1554.

    CAS  PubMed Central  Google Scholar 

  8. Wang Y, Wu Y, Li T, Wang X, Zhu C. Iron metabolism and brain development in premature infants. Front Physiol. 2019;10:463.

    PubMed  PubMed Central  Google Scholar 

  9. Tiker F, Celik B, Tarcan A, Kilicdag H, Ozbek N, Gurakan B. Serum pro-hepcidin levels and relationships with iron parameters in healthy preterm and term newborns. Pediatr Hematol Oncol. 2006;23:293–7.

    CAS  PubMed  Google Scholar 

  10. Maier RJ, Sonntag J, Walka MM, Liu G, Metze BC, Obladen M. Changing practices of red blood cell transfusions in infants with birth weights less than 1000 g. J Pediatr. 2000;136:220–4.

    CAS  PubMed  Google Scholar 

  11. Bowen JR, Patterson JA, Roberts CL, Isbister JP, Irving DO, Ford JB. Red cell and platelet transfusions in neonates: a population-based study. Arch Dis Child Fetal Neonatal Ed. 2015;100:F411–5.

    PubMed  Google Scholar 

  12. King PJ. Iron nutrition, erythrocytes, and erythropoietin in the NICU: erythropoietic and neuroprotective effects. NeoReviews. 2020;21:e80–8.

    Google Scholar 

  13. Jopling J, Henry E, Wiedmeier SE, Christensen RD. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics. 2009;123:e333–7.

    PubMed  Google Scholar 

  14. King PJ, Coe CL. Iron homeostasis in pregnancy, the fetus and the neonate. NeoReviews. 2016;17:e657–64.

    Google Scholar 

  15. Lönnerdal B, Georgieff MK, Hernell O. Developmental physiology of iron absorption, homeostasis, and metabolism in the healthy term infant. J Pediatr. 2015;167:S8–14.

    PubMed  PubMed Central  Google Scholar 

  16. Domellöf M. Meeting the iron needs of low and very low birth weight infants. Ann Nutr Metab. 2017;71:16–23.

    PubMed  Google Scholar 

  17. Rao RB, Georgieff MK. Iron therapy for preterm infants. Clin Perinatol. 2009;36:27–42.

    PubMed  PubMed Central  Google Scholar 

  18. Herzlich J, Litmanovitz I, Regev R, Bauer S, Sirota G, Steiner Z, et al. Iron homeostasis after blood transfusion in stable preterm infants—an observational study. J Perinat Med. 2016;44:919–23.

    CAS  PubMed  Google Scholar 

  19. Stripeli F, Kapetanakis J, Gourgiotis D, Drakatos A, Tsolia M, Kossiva L. Post-transfusion changes in serum hepcidin and iron parameters in preterm infants. Pediatr Int. 2018;60:148–52.

    CAS  PubMed  Google Scholar 

  20. Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS. Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. J Appl Physiol. 1996;80:140–8.

    CAS  PubMed  Google Scholar 

  21. Stockman JA 3rd, Graeber JE, Clark DA, McClellan K, Garcia JF, Kavey RE. Anemia of prematurity: determinants of the erythropoietin response. J Pediatr. 1984;105:786–92.

    PubMed  Google Scholar 

  22. Patel RM, Knezevic A, Shenvi N, Hinkes M, Keene S, Roback JD, et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA. 2016;315:889–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoxall CW, Weindling AM. The measurement of peripheral venous oxyhemoglobin saturation in newborn infants by near infrared spectroscopy with venous occlusion. Pediatr Res. 1996;39:1103–6.

    CAS  PubMed  Google Scholar 

  24. Liu G, Yan Y, Shi B, Huang J, Mu H, Li C, et al. Benefits of progesterone on brain immaturity and white matter injury induced by chronic hypoxia in neonatal rats. J Thorac Cardiovasc Surg. 2020;160:e55–66.

    PubMed  Google Scholar 

  25. Malhotra A, Sepehrizadeh T, Dhollander T, Wright D, Castillo-Melendez M, Sutherland AE, et al. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. Neuroimage Clin. 2019;24:101991.

    PubMed  PubMed Central  Google Scholar 

  26. Bailey SM, Hendricks-Munoz KD, Mally P. Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns. Am J Perinatol. 2014;31:339–44.

    PubMed  Google Scholar 

  27. Vretzakis G, Georgopoulou S, Stamoulis K, Stamatiou G, Tsakiridis K, Zarogoulidis P, et al. Cerebral oximetry in cardiac anesthesia. J Thorac Dis. 2014;6:S60–69.

    PubMed  PubMed Central  Google Scholar 

  28. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20:164–72.

    PubMed  Google Scholar 

  29. Whitehead HV, Vesoulis ZA, Maheshwari A, Rao R, Mathur AM. Anemia of prematurity and cerebral near-infrared spectroscopy: should transfusion thresholds in preterm infants be revised? J Perinatol. 2018;38:1022–9.

    PubMed  PubMed Central  Google Scholar 

  30. van Hoften JC, Verhagen EA, Keating P, ter Horst HJ, Bos AF. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child Fetal Neonatal Ed. 2010;95:F352–8.

    PubMed  Google Scholar 

  31. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79:55–64.

    CAS  PubMed  Google Scholar 

  32. Wardle SP, Yoxall CW, Weindling AM. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb Blood Flow Metab. 2000;20:272–9.

    CAS  PubMed  Google Scholar 

  33. Balegar KK, Stark MJ, Briggs N, Andersen CC. Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants. J Pediatr. 2014;164:475–80.e1.

    PubMed  Google Scholar 

  34. Verhagen EA, Keating P, ter Horst HJ, Martijn A, Bos AF. Cerebral oxygen saturation and extraction in preterm infants with transient periventricular echodensities. Pediatrics. 2009;124:294–301.

    PubMed  Google Scholar 

  35. Whitehead HV, Vesoulis ZA, Maheshwari A, Rambhia A, Mathur AM. Progressive anemia of prematurity is associated with a critical increase in cerebral oxygen extraction. Early Hum Dev. 2019. https://doi.org/10.1016/j.earlhumdev.2019.104891.

  36. Sandal G, Oguz SS, Erdeve O, Akar M, Uras N, Dilmen U. Assessment of red blood cell transfusion and transfusion duration on cerebral and mesenteric oxygenation using near-infrared spectroscopy in preterm infants with symptomatic anemia. Transfusion. 2014;54:1100–5.

    CAS  PubMed  Google Scholar 

  37. Aktas S, Ergenekon E, Ozcan E, Aksu M, Unal S, Hirfanoglu IM, et al. Effects of blood transfusion on regional tissue oxygenation in preterm newborns are dependent on the degree of anaemia. J Paediatr Child Health. 2019;55:1209–13.

    PubMed  Google Scholar 

  38. Andropolous DB, Stayer SA, Diaz LK, Ramamoorthy C. Neurological monitoring for congenital heart surgery. Anesth Analg. 2004;99:1365–75.

    Google Scholar 

  39. Hirsch JC, Charpie JR, Ohye RG, Gurney JG. Near-infrared spectroscopy: what we know and what we need to know—a systematic review of the congenital heart disease literature. J Thorac Cardiovasc Surg. 2009;137:154–9. 159e1-12

    PubMed  Google Scholar 

  40. Bonestroo HJ, Lemmers PM, Baerts W, van Bel F. Effect of antihypotensive treatment on cerebral oxygenation of preterm infants without PDA. Pediatrics. 2011;128:e1502–10.

    PubMed  Google Scholar 

  41. Tina LG, Frigiola A, Abella R, Artale B, Puleo G, D’Angelo S, et al. Near infrared spectroscopy in healthy preterm and term newborns: correlation with gestational age and standard monitoring parameters. Curr Neurovasc Res. 2009;6:148–54.

    PubMed  Google Scholar 

  42. Limperopoulos C, Gauvreau KK, O’Leary H, Moore M, Bassan H, Eichenwald EC, et al. Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics. 2008;122:e1006–13.

    PubMed  Google Scholar 

  43. MohanKumar K, Namachivayam K, Song T, Jake Cha B, Slate A, Hendrickson JE, et al. A murine neonatal model of necrotizing enterocolitis caused by anemia and red blood cell transfusions. Nat Commun. 2019;10:3494.

    PubMed  PubMed Central  Google Scholar 

  44. Fortune PM, Wagstaff M, Petros AJ. Cerebro-splanchnic oxygenation ratio (CSOR) using near infrared spectroscopy may be able to predict splanchnic ischaemia in neonates. Intensive Care Med. 2001;27:1401–7.

    CAS  PubMed  Google Scholar 

  45. Singh R, Visintainer PF, Frantz ID 3rd, Shah BL, Meyer KM, Favila SA, et al. Association of necrotizing enterocolitis with anemia and packed red blood cell transfusions in preterm infants. J Perinatol. 2011;31:176–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. DeRienzo C, Smith PB, Tanaka D, Bandarenko N, Campbell ML, Herman A, et al. Feeding practices and other risk factors for developing transfusion-associated necrotizing enterocolitis. Early Hum Dev. 2014;90:237–40.

    PubMed  PubMed Central  Google Scholar 

  47. Nowicki PT. Effects of sustained flow reduction on postnatal intestinal circulation. Am J Physiol. 1998;275:G758–768.

    CAS  PubMed  Google Scholar 

  48. Perget L, Mukhopadhyay D, Komidar L, Wiggins-Dohlvik K, Uddin MN, Beeram M. Maternal pre-eclampsia as a risk factor for necrotizing enterocolitis. J Matern Fetal Neonatal Med. 2016;S15:889–97.

    Google Scholar 

  49. Giannone PJ, Luce WA, Nankervis CA, Hoffman TM, Wold LE. Necrotizing enterocolitis in neonates with congenital heart disease. Life Sci. 2008;82:341–7.

    CAS  PubMed  Google Scholar 

  50. Jayanthi S, Seymour P, Puntis JW, Stringer MD. Necrotizing enterocolitis after gastroschisis repair: a preventable complication? J Pediatr Surg. 1998;33:705–7.

    CAS  PubMed  Google Scholar 

  51. Ito Y, Doelle SM, Clark JA, Halpern MD, McCuskey RS, Dvorak B. Intestinal microcirculatory dysfunction during the development of experimental necrotizing enterocolitis. Pediatr Res. 2007;61:180–4.

    PubMed  Google Scholar 

  52. Cortez J, Gupta M, Amaram A, Pizzino J, Sawhney M, Sood BG. Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates. J Matern Fetal Neonatal Med. 2011;24:574–82.

    CAS  PubMed  Google Scholar 

  53. Mintzer JP, Parvez B, Chelala M, Alpan G, LaGamma EF. Quiescent variability of cerebral, renal, and splanchnic regional tissue oxygenation in very low birth weight neonates. J Neonatal Perinat Med. 2014;7:199–206.

    CAS  Google Scholar 

  54. Sood BG, Cortez J, McLaughlin KL, Gupta M, Amaram A, Kolli M, et al. Near infrared spectroscopy as a biomarker for necrotizing enterocolitis following red blood cell transfusion. J Near Infrared Spectrosc. 2014;22:375–88.

    CAS  Google Scholar 

  55. Schat TE, van Zoonen AGJF, van der Laan ME, Mebius MJ, Bos AF, Hulzebos CV, et al. Early cerebral and intestinal oxygenation in the risk assessment of necrotizing enterocolitis in preterm infants. Early Hum Dev. 2019;131:75–80.

    PubMed  Google Scholar 

  56. American College of Obstetricians and Gynecologists. Committee opinion number 814: delayed umbilical cord clamping after birth. American College of Obstetricians and Gynecologists; 2020. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/12/delayed-umbilical-cord-clamping-after-birth. Accessed 26 Feb 2021.

  57. Australian and New Zealand Society of Blood Transfusion. Guidelines for transfusion and immunohaematology laboratory practice. 1st ed. Australian and New Zealand Society of Blood Transfusion; 2016. https://anzsbt.org.au/wp-content/uploads/2021/01/FINAL-Guideline_-for_Transfusion_and_Immunohaematology_Laboratory_Practice_Published_20210125.pdf. Accessed 26 Feb 2021.

  58. Resuscitation Council (UK). Resuscitation and support of transition of babies at birth. Resuscitation Council (UK); 2015. https://www.resus.org.uk/library/2015-resuscitation-guidelines/resuscitation-and-support-transition-babies-birth. Accessed 26 Feb 2021.

  59. Mercer JS, Erickson-Owens DA, Deoni SCL, Dean DC 3rd, Collins J, Parker AB, et al. Effects of delayed cord clamping on 4-month ferritin levels, brain myelin content, and neurodevelopment: a randomized controlled trial. J Pediatr. 2018;203:266–72.e2.

    PubMed  PubMed Central  Google Scholar 

  60. Rana N, Ko A, Malqvist M, Subedi K, Andersson O. Effect of delayed cord clamping of term babies on neurodevelopment at 12 months: a randomized controlled trial. Neonatology. 2019;115:36–42.

    PubMed  Google Scholar 

  61. Levy T, Blickstein I. Timing of cord clamping revisited. J Perinat Med. 2006;34:293–7.

    PubMed  Google Scholar 

  62. Lin JC, Strauss RG, Kulhavy JC, Johnson KJ, Zimmerman MB, Cress GA, et al. Phlebotomy overdraw in the neonatal intensive care nursery. Pediatrics. 2000;106:E19.

    CAS  PubMed  Google Scholar 

  63. Madan A, Kumar R, Adams MM, Benitz WE, Geaghan SM, Widness JA. Reduction in red blood cell transfusions using a bedside analyzer in extremely low birth weight infants. J Perinatol. 2005;25:21–25.

    PubMed  Google Scholar 

  64. Widness JA, Madan A, Grindeanu LA, Zimmerman MB, Wong DK, Stevenson DK. Reduction in red blood cell transfusions among preterm infants: results of a randomized trial with an in-line blood gas and chemistry monitor. Pediatrics. 2005;115:1299–306.

    PubMed  Google Scholar 

  65. Worthington-White DA, Behnke M, Gross S. Premature infants require additional folate and vitamin B12 to reduce the severity of the anemia of prematurity. Am J Clin Nutr. 1994;60:930–5.

    CAS  PubMed  Google Scholar 

  66. Haiden N, Klebermass K, Cardona F, Schwindt J, Berger A, Kohlhauser-Vollmuth C, et al. A randomized, controlled trial of the effects of adding vitamin B12 and folate to erythropoietin for the treatment of anemia of prematurity. Pediatrics. 2006;118:180–8.

    PubMed  Google Scholar 

  67. Haiden N, Schwindt J, Cardona F, Berger A, Klebermass K, Wald M, et al. Effects of a combined therapy of erythropoietin, iron, folate, and vitamin B12 on the transfusion requirements of extremely low birth weight infants. Pediatrics. 2006;118:2004–13.

    PubMed  Google Scholar 

  68. American Academy of Pediatrics, Committee on Nutrition. Iron deficiency. In: Kleinman RE, editor. Pediatric nutrition handbook. Elk Grove Village, IL: American Academy of Pediatrics; 1998. pp. 299–312.

  69. Maier RF, Obladen M, Kattner E, Natzschka J, Messer J, Regazzoni BM, et al. High-versus low-dose erythropoietin in extremely low birth weight infants. The European Multicenter rhEPO Study Group. J Pediatr. 1998;132:866–70.

    CAS  PubMed  Google Scholar 

  70. Vamvakas EC, Strauss RG. Meta-analysis of controlled clinical trials studying the efficacy of rHuEPO in reducing blood transfusions in the anemia of prematurity. Transfusion. 2001;41:406–15.

    CAS  PubMed  Google Scholar 

  71. Aher SM, Ohlsson A. Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Datbase. Syst Rev. 2006;3:CD004868.

    Google Scholar 

  72. Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2006;3:CD004863.

    Google Scholar 

  73. Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2017;11:CD004863.

    PubMed  Google Scholar 

  74. Juul SE, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T. for the PENUT Trial Consortium et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med. 2020;382:233–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Juul SE, Vu PT, Comstock BA, Wadhawan R, Mayock DE, for the Preterm Erythropoietin Neuroprotection Trial Consortium, et al. Effect of high-dose erythropoietin on blood transfusions in extremely low gestational age neonates: post hoc analysis of a randomized clinical trial. JAMA Pediatr. 2020; 174:933–43.

  76. Calhoun DA, Christensen RD, Edstrom CS, Juul SE, Ohls RK, Schibler KR, et al. Consistent approaches to procedures and practices in neonatal hematology. Clin Perinatol. 2000;27:733–53.

    CAS  PubMed  Google Scholar 

  77. Fredrickson LK, Bell EF, Cress GA, Johnson KJ, Zimmerman MB, Mahoney LT, et al. Acute physiological effects of packed red blood cell transfusion in preterm infants with different degrees of anaemia. Arch Dis Child Fetal Neonatal Ed. 2011;96:F249–53.

    PubMed  Google Scholar 

  78. Ghirardello S, Dusi E, Cortinovis I, Villa S, Fumagalli M, Agosti M, et al. Effects of red blood cell transfusions on the risk of developing complications or death: an observational study of a cohort of very low birth weight infants. Am J Perinatol. 2017;34:88–95.

    PubMed  Google Scholar 

  79. Sloan, SR. Blood products used in the newborn. In: Cloherty JP, editor. Manual of neonatal care. Philadelphia: Lippincott Williams & Wilkins; 2012. pp. 221–5.

  80. Kirpalani H, Whyte RK, Anderson C, Asztalos EV, Heddle N, Blajchman MA, et al. The premature infants in need of transfusion (PINT) study: a randomized controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149:301–7.

    PubMed  Google Scholar 

  81. Bell EF, Strauss RG, Widness JA, Mahoney LT, Mock DM, Seward VJ, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusions in preterm infants. Pediatrics. 2005;115:1685–91.

    PubMed  Google Scholar 

  82. Blank JP, Sheagren TG, Vajaria J, Mangurten HH, Benawra RS, Puppala BL. The role of RBC transfusion in the premature infant. Am J Dis Child. 1984;138:831–3.

    CAS  PubMed  Google Scholar 

  83. Keyes WG, Donohue PK, Spivak JL, Jones MD Jr, Oski FA. Assessing the need for transfusion of premature infants and the role of hematocrit, clinical signs, and erythropoietin level. Pediatrics. 1989;84:412–7.

    CAS  PubMed  Google Scholar 

  84. Brooks SE, Marcus DM, Gillis D, Pirie E, Johnson MH, Bhatia J. The effect of blood transfusion protocol on retinopathy of prematurity: a prospective, randomized study. Pediatrics 1999;104:514–8. https://doi.org/10.1542/peds.104.3.514.

    Article  CAS  PubMed  Google Scholar 

  85. Franz AR, Engel C, Bassler D, Rudiger M, Thome UH. for the ETTNO Investigators, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA. 2020;324:560–70.

    PubMed  Google Scholar 

  86. Lopriore E. Updates in red blood cell and platelet transfusions in preterm neonates. Am J Perinatol. 2019;36:S37–S40.

    PubMed  Google Scholar 

  87. British Committee for Standards in Haematology: British Committee for Standards in Haematology Clinical Guideline. Transfusion for fetuses, neonates, and older children. London: BCSH; 2016.

    Google Scholar 

  88. Miller Y, Bachowski G, Benjamin R. Practice guidelines for blood transfusion, 2nd ed. Washington: American Red Cross; 2007. pp. 5–17.

  89. Ohls RK. The use of erythropoietin in neonates. Clin Perinatol. 2000;27:681–96.

    CAS  PubMed  Google Scholar 

  90. Bednarek FJ, Weisberger S, Richardson DK, Frantz ID 3rd, Shah B, Rubin LP. Variations in blood transfusions among newborn intensive care units. SNAP II Study Group. J Pediatr. 1998;133:601–7.

    CAS  PubMed  Google Scholar 

  91. Howarth C, Banerjee J, Aladangady N. Red blood cell transfusion in preterm infants: current evidence and controversies. Neonatology. 2018;114:7–16.

    PubMed  Google Scholar 

  92. dos Santos AM, Guinsburg R, de Almeida MF, Procianoy RS, Marba ST, Ferri WA. for the Brazilian Network on Neonatal Research, et al. Factors associated with red blood cell transfusions in very-low-birth-weight preterm infants in Brazilian neonatal units. BMC Pediatr. 2015;15:113

    PubMed  PubMed Central  Google Scholar 

  93. Fergusson D, Hebert P, Hogan DL, LeBel L, Rouvinez-Bouali N, Smyth JA, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial. JAMA. 2012;308:1443–51.

    CAS  PubMed  Google Scholar 

  94. Cooke RW, Clark D, Hickey-Dwyer M, Weindling AM. The apparent role of blood transfusions in the development of retinopathy of prematurity. Eur J Pediatr. 1993;152:833–6.

    CAS  PubMed  Google Scholar 

  95. Cooke RW, Drury JA, Yoxall CW, James C. Blood transfusion and chronic lung disease in preterm infants. Eur J Pediatr. 1997;156:47–50.

    CAS  PubMed  Google Scholar 

  96. Paul DA, Mackley A, Novitsky A, Zhao Y, Brooks A, Locke RG. Increased odds of necrotizing enterocolitis after transfusion of red blood cells in premature infants. Pediatrics. 2011;127:635–41.

    PubMed  Google Scholar 

  97. Christensen RD, Lambert DK, Henry E, Wiedmeier SE, Snow GL, Baer VL, et al. Is ‘transfusion-associated necrotizing enterocolitis’ an authentic pathogenic entity? Transfusion. 2010;50:1106–12.

    PubMed  Google Scholar 

  98. Baer VL, Lambert DK, Henry E, Snow GL, Butler A, Christensen RD. Among very-lowbirth-weight neonates is red blood cell transfusion an independent risk factor for subsequently developing a severe intraventricular hemorrhage? Transfusion. 2011;51:1170–8.

    PubMed  Google Scholar 

  99. McCoy TE, Conrad AL, Richman LC, Lindgren SD, Nopoulos PC, Bell EF. Neurocognitive profiles of preterm infants randomly assigned to lower or higher hematocrit thresholds for transfusion. Child Neuropsychol. 2011;17:347–67.

    PubMed  PubMed Central  Google Scholar 

  100. Nopoulos PC, Conrad AL, Bell EF, Strauss RG, Widness JA, Magnotta VA, et al. Long-term outcome of brain structure in premature infants: effects of liberal vs. restricted red blood cell transfusions. Arch Pediatr Adolesc Med. 2011;165:443–50.

    PubMed  PubMed Central  Google Scholar 

  101. Whyte RK, Kirpalani H, Asztalos EV, Andersen C, Blajchman M, Heddle N. for the PINTOS Study Group, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics. 2009;123:207–13.

    PubMed  Google Scholar 

  102. Ibrahim M, Ho SK, Yeo CL. Restrictive versus liberal red blood cell transfusion thresholds in very low birth weight infants: a systematic review and meta-analysis. J Paediatr Child Health. 2014;50:122–30.

    PubMed  Google Scholar 

  103. Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Syst Rev. 2011;11:CD000512.

    Google Scholar 

  104. Kirpalani H, Bell E, Hintz SR, Tan S, Schmidt B, Chaudhary AS, et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N Engl J Med. 2020;383:2639–51.

  105. Kamper-Jorgensen M, Ahlgren M, Rostgaard K, Melbye M, Edgren G, Nyren O, et al. Survival after blood transfusion. Transfusion. 2008;48:2577–84.

    PubMed  Google Scholar 

  106. Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340:409–17.

    CAS  PubMed  Google Scholar 

  107. Kneyber MC, Hersi MI, Twisk JW, Markhorst DG, Plotz FB. Red blood cell transfusion in critically ill children is independently associated with increased mortality. Intensive Care Med. 2007;33:1414–22.

    PubMed  Google Scholar 

  108. Murphy GJ, Reeves BC, Rogers CA, Rizvi SI, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation. 2007;116:2544–52.

    PubMed  Google Scholar 

  109. Somani A, Steiner ME, Hebbel RP. The dynamic regulation of microcirculatory conduit function: features relevant to transfusion medicine. Transfus Apher Sci. 2010;43:61–68.

    PubMed  PubMed Central  Google Scholar 

  110. dos Santos AM, Guinsburg R, de Almeida MF, Procianoy RS, Leone CR, Marba ST. for the Brazilian Network on Neonatal Research, et al. Red blood cell transfusions are independently associated with intra-hospital mortality in very low birth weight preterm infants. J Pediatr. 2011;159:371–6, e1-3.

    PubMed  Google Scholar 

  111. Bux J, Sachs UJ. The pathogenesis of transfusion-related acute lung injury (TRALI). Br J Haematol. 2007;136:788–99.

    CAS  PubMed  Google Scholar 

  112. Rashid N, Al-Sufayan F, Seshia MM, Baier RJ. Post transfusion lung injury in the neonatal population. J Perinatol. 2013;33:292–6.

    CAS  PubMed  Google Scholar 

  113. Grev JE, Stanclova M, Ellsworth MA, Colby CE. Does red blood cell transfusion-related acute lung injury occur in premature infants? A retrospective cohort analysis. Am J Perinatol. 2017;34:14–18.

    PubMed  Google Scholar 

  114. Keir A, Pal S, Trivella M, Lieberman L, Callum J, Shehata N, et al. Adverse effects of red blood cell transfusions in neonates: a systematic review and meta-analysis. Transfusion. 2016;56:2773–80.

    PubMed  Google Scholar 

  115. Hall N, Ong EG, Ade-Ajayi N, Fasoli L, Ververidis M, Kiely EM, et al. T cryptantigen activation is associated with advanced necrotizing enterocolitis. J Pediatr Surg. 2002;37:791–3.

    CAS  PubMed  Google Scholar 

  116. Gephart SM. Transfusion-associated necrotizing enterocolitis: evidence and uncertainty. Adv Neonatal Care. 2012;12:232–6.

    PubMed  PubMed Central  Google Scholar 

  117. Rai SE, Sidhu AK, Krishnan RJ. Transfusion-associated necrotizing enterocolitis re-evaluated: a systematic review and meta-analysis. J Perinat Med. 2018;46:665–76.

    PubMed  Google Scholar 

  118. Christensen RD, Lambert DK, Henry E, Wiedmeier SE, Snow GL, Baer VL, et al. Is “transfusion-associated necrotizing enterocolitis” an authentic pathogenic entity? Transfusion. 2010;50:1106–12.

    PubMed  Google Scholar 

  119. Keir AK, Wilkinson D. Question 1: do feeding practices during transfusion influence the risk of developing necrotising enterocolitis in preterm infants? Archiv Dis Child. 2013;98:386–8.

    Google Scholar 

  120. Baer VL, Lambert DK, Henry E, Snow GL, Christensen RD. Red blood cell transfusion of preterm neonates with a grade 1 intraventricular hemorrhage is associated with extension to a grade 3 or 4 hemorrhage. Transfusion. 2011;51:1933–9.

    PubMed  Google Scholar 

  121. Christensen RD, Baer VL, Lambert DK, Ilstrup SJ, Eggert LD, Henry E. Association, among very-low-birthweight neonates, between red blood cell transfusions in the week after birth and severe intraventricular hemorrhage. Transfusion. 2014;54:104–8.

    PubMed  Google Scholar 

  122. Brooks SE, Marcus DM, Gillis D, Pirie E, Johnson MH, Bhatia J. The effect of blood transfusion protocol on retinopathy of prematurity: a prospective, randomized study. Pediatrics. 1999;104:514–8.

    CAS  PubMed  Google Scholar 

  123. Stark MJ, Keir AK, Andersen CC. Does non-transferrin bound iron contribute to transfusion related immune-modulation in preterms? Arch Dis Child Fetal Neonatal Ed. 2013;98:F424–429.

    PubMed  Google Scholar 

  124. Stutchfield CJ, Jain A, Odd D, Williams C, Markham R. Foetal haemoglobin, blood transfusion, and retinopathy of prematurity in very preterm infants: a pilot prospective cohort study. Eye. 2017;31:1451–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Collard KJ. Transfusion related morbidity in premature babies: possible mechanisms and implications for practice. World J Clin Pediatr. 2014;3:19–29.

    PubMed  PubMed Central  Google Scholar 

  126. Dani C, Reali MF, Bertini G, Martelli E, Pezzati M, Rubaltelli FF. The role of blood transfusions and iron intake on retinopathy of prematurity. Early Hum Dev. 2001;62:57–63.

    CAS  PubMed  Google Scholar 

  127. Hesse L, Eberl W, Schlaud M, Poets CF. Blood transfusion, iron load, and retinopathy of prematurity. Eur J Pediatr. 1997;156:465–70.

    CAS  PubMed  Google Scholar 

  128. Lust C, Vesoulis Z, Jackups R Jr, Liao S, Rao R, Mathur AM. Early red cell transfusion is associated with development of severe retinopathy of prematurity. J Perinatol. 2019;39:393–400.

    CAS  PubMed  Google Scholar 

  129. National Blood Authority (NBA). Patient blood management guidelines: module 6—neonatal and paediatrics; Canberra, Australia: NBA; 2016. p202.

  130. Whyte RK, Jefferies AL. Canadian Paediatric Society, Fetus and Newborn Committee Red blood cell transfusion in newborn infants. Paediatr Child Health. 2014;19:213–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

NIH Grants HL124078 and HL133022 (AM).

Author information

Authors and Affiliations

Authors

Contributions

CCC performed the literature review and wrote the first draft of the manuscript. RR performed and reviewed the literature and critically edited the review for content. AM coinitiated the concept for the review, performed literature review, and critically reviewed and edited the manuscript for content. AMM initiated the concept for the review, performed literature review, and critically reviewed and edited the manuscript for content.

Corresponding author

Correspondence to Amit M. Mathur.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cibulskis, C.C., Maheshwari, A., Rao, R. et al. Anemia of prematurity: how low is too low?. J Perinatol 41, 1244–1257 (2021). https://doi.org/10.1038/s41372-021-00992-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-00992-0

This article is cited by

Search

Quick links