Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Body adiposity and oral feeding outcomes in infants: a pilot study



Prevalence of oral feeding difficulties in high-risk infants is increasing. Desire to take orally can be influenced by hunger and satiety, which may influence growth and body fat.


To determine the association between body adiposity and infant oral feeding.


Retrospective case–control study of infants ≥37-week postmenstrual age (PMA). Infants on tube feeding (cases) compared to birth gestation-matched infants on full oral feeding (controls). Body composition was determined by air displacement plethysmography.


Overall, 16 cases vs. 16 controls. At study, cases vs. controls had similar PMA, weight and length z-scores, and calorie intake. The mean oral intake was significantly less in cases vs. controls (66 vs. 168 ml/kg/day, p < 0.001). Cases had significantly higher percentage of fat mass (18.7 vs. 10.9) and fat-mass z-score (1.62 vs. 0.08) (p < 0.05), but similar fat-free mass vs. controls. Five case infants required gastrostomy.


Higher body adiposity may worsen the infant oral feeding outcomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The scatter plot figure showing the inverse relationship between % fat-mass and oral intake.


  1. 1.

    American Academy of Pediatrics Committee on Fetus and Newborn. Hospital discharge of the high-risk neonate. Pediatrics. 2008;122:1119–26.

    Article  Google Scholar 

  2. 2.

    Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Horton J, Atwood C, Gnagi S, Teufel R, Clemmens C. Temporal trends of pediatric dysphagia in hospitalized patients. Dysphagia. 2018;33:655–61.

    PubMed  Article  Google Scholar 

  4. 4.

    Hatch LD, Scott TA, Walsh WF, Goldin AB, Blakely ML, Patrick SW. National and regional trends in gastrostomy in very low birth weight infants in the USA: 2000-2012. J Perinatol. 2018;38:1270–6.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Jadcherla SR, Wang M, Vijayapal AS, Leuthner SR. Impact of prematurity and co-morbidities on feeding milestones in neonates: a retrospective study. J Perinatol. 2010;30:201–8.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Jadcherla SR, Khot T, Moore R, Malkar M, Gulati IK, Slaughter JL. Feeding methods at discharge predict long-term feeding and neurodevelopmental outcomes in preterm infants referred for gastrostomy evaluation. J Pediatr. 2017;181:125–130.e1.

    PubMed  Article  Google Scholar 

  7. 7.

    Lainwala S, Kosyakova N, Power K, Hussain N, Moore JE, Hagadorn JI, et al. Delayed achievement of oral feedings is associated with adverse neurodevelopmental outcomes at 18 to 26 months follow-up in preterm infants. Am J Perinatol. 2020;37:483–90.

  8. 8.

    Walsh MC, Bell EF, Kandefer S, Saha S, Carlo WA, D’angio CT, et al. Neonatal outcomes of moderately preterm infants compared to extremely preterm infants. Pediatr Res. 2017;82:297–304.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Kitzmiller JL, Cloherty JP, Younger MD. Diabetic pregnancy and perinatal morbidity. Am J Obstet Gynecol. 1978;131:560–80.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Malkar MB, Viswanathan SK, Jadcherla SR. Pilot study of pharyngoesophageal dysmotility mechanisms in dysphagic infants of diabetic mothers. Am J Perinatol. 2019;36:1237–42.

    PubMed  Article  Google Scholar 

  11. 11.

    Tolosa JN, Calhoun DA. Maternal and neonatal demographics of macrosomic infants admitted to the neonatal intensive care unit. J Perinatol. 2017;37:1292–6.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    American Academy of Pediatrics. Pediatric Nutrition Handbook. 5th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2004.

  13. 13.

    Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Johnson MJ, Wootton SA, Leaf AA, Jackson AA. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics. 2012;130:e640–649.

    PubMed  Article  Google Scholar 

  15. 15.

    Ramel SE, Gray HL, Ode KL, Younge N, Georgieff MK, Demerath EW. Body composition changes in preterm infants following hospital discharge: comparison with term infants. J Pediatr Gastroenterol Nutr. 2011;53:333–8.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology. 2012;102:19–24.

    PubMed  Article  Google Scholar 

  17. 17.

    Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol. 2006;195:1100–3.

    PubMed  Article  Google Scholar 

  18. 18.

    Kara M, Orbak Z, Döneray H, Ozkan B, Akcay F. The relationship between skinfold thickness and leptin, ghrelin, adiponectin, and resistin levels in infants of diabetic mothers. Fetal Pediatr Pathol. 2017;36:1–7.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102:F65–72.

    PubMed  Article  Google Scholar 

  20. 20.

    Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8:21–34.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Nagel E, Hickey M, Teigen L, Kuchnia A, Curran K, Soumekh L, et al. Clinical Application of body composition methods in premature infants. J Parenter Enteral Nutr. 2020.

  23. 23.

    Norris T, Ramel SE, Catalano P, Caoimh CN, Roggero P, Murray D, et al. New charts for the assessment of body composition, according to air-displacement plethysmography, at birth and across the first 6 mo of life. Am J Clin Nutr. 2019;109:1353–60.

    PubMed  Article  Google Scholar 

  24. 24.

    Austin J, Marks D. Hormonal regulators of appetite. Int J Pediatr Endocrinol. 2009;2009:141753.

    PubMed  Article  Google Scholar 

  25. 25.

    Shekhawat PS, Garland JS, Shivpuri C, Mick GJ, Sasidharan P, Pelz CJ, et al. Neonatal cord blood leptin: its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr Res. 1998;43:338–43.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Tapanainen P, Leinonen E, Ruokonen A, Knip M. Leptin concentrations are elevated in newborn infants of diabetic mothers. Horm Res. 2001;55:185–90.

    CAS  PubMed  Google Scholar 

  27. 27.

    Katsuki A, Urakawa H, Gabazza EC, Murashima S, Nakatani K, Togashi K, et al. Circulating levels of active ghrelin is associated with abdominal adiposity, hyperinsulinemia and insulin resistance in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2004;151:573–7.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Stylianou C, Galli-Tsinopoulou A, Farmakiotis D, Rousso I, Karamouzis M, Koliakos G, et al. Ghrelin and leptin levels in obese adolescents. Relationship with body fat and insulin resistance. Hormones. 2007;6:295–303.

    PubMed  Article  Google Scholar 

  29. 29.

    Pfister KM, Gray HL, Miller NC, Demerath EW, Georgieff MK, Ramel SE. Exploratory study of the relationship of fat-free mass to speed of brain processing in preterm infants. Pediatr Res. 2013;74:576–83.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ramel SE, Gray HL, Christiansen E, Boys C, Georgieff MK, Demerath EW. Greater early gains in fat-free mass, but not fat mass, are associated with improved neurodevelopment at 1 year corrected age for prematurity in very low birth weight preterm infants. J Pediatr. 2016;173:108–15.

    PubMed  Article  Google Scholar 

  31. 31.

    Cauble JS, Dewi M, Hull HR. Validity of anthropometric equations to estimate infant fat mass at birth and in early infancy. BMC Pediatr. 2017;17:88.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Olhager E, Forsum E. Assessment of total body fat using the skinfold technique in full-term and preterm infants. Acta Paediatr. 2006;95:21–28.

    PubMed  Article  Google Scholar 

  33. 33.

    Deierlein AL, Thornton J, Hull H, Paley C, Gallagher D. An anthropometric model to estimate neonatal fat mass using air displacement plethysmography. Nutr Metab. 2012;9:21.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sreekanth Viswanathan.

Ethics declarations

Conflict of interest

SV is the guarantor of the article. All authors declare no potential competing conflicts of interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, S., Osborn, E. & Jadcherla, S. Body adiposity and oral feeding outcomes in infants: a pilot study. J Perinatol 41, 1059–1064 (2021).

Download citation


Quick links