Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The use of intramuscular glucagon to prevent IV glucose infusion in early neonatal hypoglycemia



To investigate the success rate of intramuscular (IM) glucagon in preventing need for IV glucose and describe its glycemic effect.


Retrospective study of 158 consecutive term neonates with feeding-resistant hypoglycemia treated with glucagon.


After glucagon, blood glucose (BG) increased in all but 1 infant by 25.9 ± 17.1, 42.1 ± 21.1, and 39.2 ± 28.3 mg/dL (1.4 ± 0.9, 2.3 ± 1.2, 2.2 ± 1.6 mmol/L) at 30, 60 and 120 mins respectively. In multivariable logistic regression, glucagon success was dependent upon gender (increased male risk) (P = 0.021), meeting American Academy of Pediatrics (AAP) criteria for immediate IV glucose (P = 0.004), birth weight, (P = 0.018) and delta glucose concentration at 60 min (P = 0.013). After IM glucagon, 24 out of 49 infants that met AAP criteria for immediate IV glucose (49%) ended up not requiring any additional intervention.


Glucagon increases BG nearly universally in hypoglycemic infants and allowed reducing the number of infants that needed immediate IV glucose infusion therapy by ≈half.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Study clinical protocol.
Fig. 2


  1. 1.

    Hay WW Jr, Raju TN, Higgins RD, Kalhan SC, Devaskar SU. Knowledge gaps and research needs for understanding and treating neonatal hypoglycemia: workshop report from Eunice Kennedy Shriver National Institute of Child Health and Human Development. J Pediatr. 2009;155:612–17.

    PubMed  Article  Google Scholar 

  2. 2.

    Cornblath MD, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, et al. Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds. Pediatrics. 2000;105:1141–5.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Maayan-Metzger A, Lubin D, Kuint J. Hypoglycemia rates in the first days of life among term infants born to diabetic mothers. Neonatology. 2009;96:80–5.

    PubMed  Article  Google Scholar 

  4. 4.

    Shah R, Harding J, Brown J, McKinlay C. Neonatal Glycaemia and Neurodevelopmental Outcomes: a Systematic Review and Meta-Analysis. Neonatology. 2019;115:116–26.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kaiser JR, Bai S, Gibson N, Holland G, Lin TM, Swearingen CJ, et al. Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study. JAMA Pediatr. 2015;169:913–21.

    PubMed  Article  Google Scholar 

  6. 6.

    Anchan JC, Carr NR, Ahmad KA. Neonatal hypoglycemia: is there a neurodevelopmental impact in early childhood? J Perinatol. 2019;39:4–7.

    PubMed  Article  Google Scholar 

  7. 7.

    Tin W, Brunskill G, Kelly T, Fritz S. 15-year follow-up of recurrent “hypoglycemia” in preterm infants. Pediatrics. 2012;130:e1497–503.

    PubMed  Article  Google Scholar 

  8. 8.

    Committee on Fetus and Newborn, Adamkin DH. Postnatal glucose homeostasis in late-preterm and term infants. Pediatrics 2011;127:575–79.

    Article  Google Scholar 

  9. 9.

    Bromiker R, Perry A, Kasirer Y, Einav S, Klinger G, Levy-Khademi F. Early neonatal hypoglycemia: incidence of and risk factors. A cohort study using universal point of care screening. J Matern Fetal Neonatal Med. 2019;32:786–92.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Smolkin T, Ulanovsky I, Carasso P, Makhoul IR. Standards of admission capillary blood glucose levels in cesarean born neonates. World J Pediatr. 2017;13:433.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Pagliara AS, Karl IE, Haymond M, Kipnis DM. Hypoglycemia in infancy and childhood. J Pediatr. 1973;82:365–79.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    De Leon DD, Stanley CA. Neonatal Hypoglycemia: GLOW at the End of the Tunnel? J Pediatr. 2020;223(Aug):10–12.

    PubMed  Article  Google Scholar 

  13. 13.

    Stanley CA, Rozance PJ, Thornton PS, De Leon DD, Harris D, Haymond MW, et al. Re-evaluating “transitional neonatal hypoglycemia”: mechanism and implications for management. J Pediatr. 2015;166:1520–5.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Thornton PS, Stanley CA, De Leon DD, Harris D, Haymond MW, Hussain K, et al. Pediatric Endocrine Society. Recommendations from the Pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr. 2015;167:238–45.

    PubMed  Article  Google Scholar 

  15. 15.

    Kinnala A, Rikalainen H, Lapinleimu H, Parkkola R, Kormano M, Kero P. Cerebral magnetic resonance imaging and ultrasonography findings after neonatal hypoglycemia. Pediatrics. 1999;103:724–9.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    McKinlay CJD, Alsweiler JM, Anstice NS, Burakevych N, Chakraborty A, Chase JG, et al. Children with Hypoglycemia and their Later Development (CHYLD) Study Team. Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. JAMA Pediatr. 2017;171:972–83.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Duvanel CB, Fawer CL, Cotting J, Hohlfeld P, Matthieu JM. Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. J Pediatr. 1999;134:492–8.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Harris DL, Weston PJ, Battin MR, Harding JE. A survey of the management of neonatal hypoglycaemia within the Australian and New Zealand Neonatal Network. J Paediatr Child Health. 2014;50:E55–6.

    PubMed  Article  Google Scholar 

  19. 19.

    Cornblath M. Neonatal hypoglycemia. In: Donn SM, Fisher CW, editors. Risk Management Techniques in Perinatal and Neonatal Practice. Armonk, NY: Futura Publishing Co.; 1996. p. 437–48.

  20. 20.

    Singhal PK, Singh M, Paul VK, Malhotra AK, Deorari AK, Ghorpade MD. A controlled study of sugar-fortified milk feedingfor prevention of neonatal hypoglycaemia. Indian J Med Res. 1991;94:342–5.

    CAS  PubMed  Google Scholar 

  21. 21.

    Dollberg S, Lahav S, Mimouni FB. A comparison of intakes of breast-fed and bottle-fed infants during the first two days of life. J Am Coll Nutr. 2001;20:209–11.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Weston PJ, Harris DL, Battin M, Brown J, Hegarty JE, Harding JE. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. Cochrane Database Syst Rev. 2016;5:CD011027.

    Google Scholar 

  23. 23.

    Harris DL, Weston PJ, Signal M, Chase JG, Harding JE. Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial. Lancet 2013;382:2077–83.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Makker K, Alissa R, Dudek C, Travers L, Smotherman C, Hudak ML. Glucose Gel in Infants at Risk for Transitional Neonatal Hypoglycemia. Am J Perinatol. 2018;35:1050–56.

    PubMed  Article  Google Scholar 

  25. 25.

    Solimano A, Kwan E, Osiovich H, Dyer R, Elango R. Dextrose gels for neonatal transitional hypoglycemia: What are we giving our babies? Paediatr Child Health. 2019;24:115–118.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Cornblath M, Levin EY, Marquetti E. The effect of glucagon on the concentration of sugar in the capilllary blood of the newborn infant. Pediatrics. 1958;21:885.

    CAS  PubMed  Google Scholar 

  27. 27.

    Hawdon JM, Aynsley-Green A, Ward Platt MP. Neonatal blood glucose concentrations: metabolic effects of intravenous glucagon and intragastric medium chain triglyceride. Arch Dis Child. 1993;68:255–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Smolkin T, Makhoul JS, Elias R, Farah F, Kugelman A, Dallashi M, et al. Experience with intramuscular glucagon for infants with early neonatal hypoglycemia. J Pediatr Endocrinol Metab. 2019;32:1023–26.

    PubMed  Article  Google Scholar 

  29. 29.

    Miralles RE, Lodha A, Perlman M, Moore AM. Experience with intravenous glucagon infusions as a treatment for resistant neonatal hypoglycemia. Arch Pediatr Adolesc Med. 2002;156:999.

    PubMed  Article  Google Scholar 

  30. 30.

    Narvey MR, Marks SD. The screening and management of newborns at risk for low blood glucose. Paediatr Child Health 2019;24:536–54.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    NEOFAX: glucagon, retrieved on Aug 27 20020 at:

  32. 32.

    Godin R, Taboada M, Kahn DJ A comparison of the glycemic effects of glucagon using two dose ranges in neonates and infants with hypoglycemia. J Perinatol. 2020 Aug. Online ahead of print.

  33. 33.

    Ghys T, Goedhuys W, Spincemaille K, Gorus F, Gerlo E. Plasma-equivalent glucose at the point-of-care: evaluation of Roche Accu-Chek Inform and Abbott Precision PCx glucose meters. Clin Chim Acta. 2007;386:63–68.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Joseph JI. Analysis: New point-of-care blood glucose monitoring system for the hospital demonstrates satisfactory analytical accuracy using blood from critically ill patients–an important step toward improved blood glucose control in the hospital. J Diabetes Sci Technol. 2013;7:1288–93.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Dollberg S, Haklai Z, Mimouni FB, Gorfein I, Gordon ES. Birth weight standards in the live-born population in Israel. Isr Med Assoc J. 2005;7:311–14.

    PubMed  Google Scholar 

  36. 36.

    Bracero LA, Cassidy S, Byrne DW. Effect of gender on perinatal outcome in pregnancies complicated by diabetes. Gynecol Obstet Investig. 1996;41:10–14.

    CAS  Article  Google Scholar 

  37. 37.

    Polderman KH, Gooren LJ, Asschcman H, Balder A, Heine RJ. Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol Metab. 1994;79:265–71.

    CAS  PubMed  Google Scholar 

  38. 38.

    Chandran S, Rajadurai V, Alim A, Hussain K. Current perspectives on neonatal hypoglycemia, its management, and cerebral injury risk. Res Rep Neonatol. 2015;5:17–30.

    Google Scholar 

  39. 39.

    Harris DL, Weston PJ, Gamble GD, Harding JE. Glucose Profiles in Healthy Term Infants in the First 5 Days: the Glucose in Well Babies (GLOW) Study. J Pediatr. 2020;223:34–41.e4.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information




Dr YK contributed to the concept and its realization, statistical analyses and writing of the paper. Ms OD contributed to the database collection and organization, and to the writing of the paper. Dr FBM contributed to the concept and its realization, statistical analyses and writing of the paper. Dr NW contributed to the concept and critical review of the paper. Drs CH contributed to statistical analyses and critical review of the paper. Drs ABN contributed to the realization of the project, troubleshooting of technical issues, and reviewed critically the paper. All authors reviewed the paper for important intellectual contents and approved the final version. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Yair Kasirer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ophir Dotan’s participation in this study was performed in fulfillment of research requirements toward the MD degree.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kasirer, Y., Dotan, O., Mimouni, F.B. et al. The use of intramuscular glucagon to prevent IV glucose infusion in early neonatal hypoglycemia. J Perinatol 41, 1158–1165 (2021).

Download citation


Quick links