Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Left-sided congenital diaphragmatic hernia: can we improve survival while decreasing ECMO?

Abstract

Background

Mortality and ECMO rates for congenital diaphragmatic hernia (CDH) remain ~30%. In 2016, we changed our CDH guidelines to minimize stimulation while relying on preductal oxygen saturation, lower mean airway pressures, stricter criteria for nitric oxide (iNO), and inotrope use. We compared rates of ECMO, survival, and survival without ECMO between the two epochs.

Design/Methods

Retrospective review of left-sided CDH neonates at the University of Utah/Primary Children’s Hospital NICUs during pre (2003–2015, n = 163) and post (2016–2019, n = 53) epochs was conducted. Regression analysis controlled for defect size and intra-thoracic liver.

Results

Following guideline changes, we identified a decrease in ECMO (37 to 13%; p = 0.001) and an increase in survival without ECMO (53 to 79%, p = 0.0001). Overall survival increased from 74 to 89% (p = 0.035).

Conclusion(s)

CDH management guideline changes focusing on minimizing stimulation, using preductal saturation and less aggressive ventilator/inotrope support were associated with decreased ECMO use and improved survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Ameis D, Khoshgoo N, Keijzer R. Abnormal lung development in congenital diaphragmatic hernia. Semin Pediatr Surg. 2017;26:123–8.

    Article  Google Scholar 

  2. Chandrasekharan PK, Rawat M, Madappa R, Rothstein DH, Lakshminrusimha S. Congenital diaphragmatic hernia - a review. Matern Health Neonatol Perinatol. 2017;11:6.

    Article  Google Scholar 

  3. Mohseni-Bod H, Bohn D. Pulmonary hypertension in congenital diaphragmatic hernia. Sem Pediatr Surg. 2007;16:126–33.

    Article  Google Scholar 

  4. Lally KP. Congenital diaphragmatic hernia—the past 25 (or so) years. J Pediatr Surg. 2016;51:695–8.

    Article  Google Scholar 

  5. Haroon J, Chamberlain RS. An evidence-based review of the current treatment of congenital diaphragmatic hernia. Clin Pediatr. 2013;52:115–24.

    Article  Google Scholar 

  6. Pugliandla PA, Grabowski J, Austin M, Hedrick H, Renaud E, Arnold M, et al. Management of congenital diaphragmatic hernia: A systematic review from the APSA outcomes and evidence based practice committee. J Pediatr Surg. 2015;50:1958–70.

    Article  Google Scholar 

  7. Snoek KG, Reiss IK, Greenough A, Capolupo I, Urlesberger B, Wessel L. for CDH EURO Consortium. et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus—2015 Update. Neonatology. 2016;110:66–74.

    Article  Google Scholar 

  8. The Canadian Congenital Diaphragmatic Hernia Collaborative. Diagnosis and management of congenital diaphragmatic hernia: a clinical practice guideline. CMAJ. 2018;190:E103–112.

    Article  Google Scholar 

  9. Wung JT, Sahni R, Moffitt ST, Lipsitz E, Stolar CJ. Congenital diaphragmatic hernia: survival treated with very delayed surgery, spontaneous respiration, and no chest tube. J Pediatr Surg. 1995;30:406–9.

    Article  CAS  Google Scholar 

  10. Lally KP, Lasky RE, Lally PA, Bagolan P, Davis CF, Frenckner BP. The Congenital Diaphragmatic Hernia Study Group. et al. Standardized reporting for congenital diaphragmatic hernia—an international consensus. J Pediatr Surg. 2013;48:2408–15.

    Article  Google Scholar 

  11. Snoek KG, Capolupo I, van Rosmalen J, Hout Lde J, Vijfhuize S, Greenough A.for the CDH EURO Consortium. et al. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: a randomized clinical trial (The VICI-trial). Ann Surg. 2016;263:867–74.

    Article  Google Scholar 

  12. Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT, Neonatal Ventilation Study Group. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N. Engl J Med. 2002;347:643–52.

    Article  Google Scholar 

  13. Johnson AH, Peacock JL, Greenough A, Marlow N, Limb ES, Marston L. United Kingdom Oscillation Study Group. et al. High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity. N. Engl J Med. 2002;347:633–42.

    Article  Google Scholar 

  14. Muhlethaler V, Malcolm G. Mechanical ventilation in the newborn; a simplified approach. Part 2: High-frequency ventilation. J Paediatr Child Health. 2014;50:E10–3.

    Article  Google Scholar 

  15. Dargaville PA, Tingay DG. Lung protective ventilation in extremely preterm infants. J Paediatr Child Health. 2012;48:740–6.

    Article  Google Scholar 

  16. Fougeres E, Teboul J-L, Richard C, Osman D, Chemla D, Monnet X. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38:802–7.

    Article  Google Scholar 

  17. Guevorkian D, Mur S, Cavatorta E, Pognon L, Rakza T, Storme L. Lower distending pressure improves respiratory mechanics in congenital diaphragmatic hernia complicated by persistent pulmonary hypertension. J Pediatr. 2018;200:38–43.

    Article  Google Scholar 

  18. Saugstad OD, Sejersted Y, Solberg R, Wollen EJ, Bjoras M. Oxygenation of the newborn: a molecular approach. Neonatology. 2012;101:315–25.

    Article  CAS  Google Scholar 

  19. Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen use in neonatal care: a two-edged sword. Front Pediatr. 2017;4:143.

    Article  Google Scholar 

  20. Lakshminrusimha S, Russell JA, Steinhorn RH, Swartz DD, Ryan RM, Gugino SF, et al. Pulmonary hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen. Pediatr Res. 2007;62:313–8.

    Article  CAS  Google Scholar 

  21. Lakshminrusimha S, Swartz DD, Gugino SF, Ma CX, Wynn KA, Ryan RM, et al. Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res. 2009;66:539–44.

    Article  Google Scholar 

  22. Jancelewicz T, Brindle ME, Guner YS, Lally PA, Lally KP, Harting MT.for the Congenital Diaphragmatic Hernia Study Group (CDHSG) and Pediatric Surgery Research Collaborative (PedSRC). Toward standardized management of congenital diaphragmatic hernia: an analysis of practice guidelines. J Surg Res. 2019;243:229–35.

    Article  Google Scholar 

  23. Riley JS, Antiel RM, Rintoul NE, Ades AM, Waqar LN, Lin N, et al. Reduced oxygen concentration for the resuscitation of infants with congenital diaphragmatic hernia. J Perinatol. 2018;38:834–43.

    Article  Google Scholar 

  24. Gien J, Kinsella JP. Differences in preductal and postductal arterial blood gas measurements in infants with severe congenital diaphragmatic hernia. Arch Dis Child Fetal Neonatal Ed. 2016;101:F314–318.

    Article  Google Scholar 

  25. Moffitt ST, Schulze KF, Sahni R, Wung J-T, Myers MM, Stolar CJ. Preoperative cardiorespiratory trends in infants with congenital diaphragmatic hernia. J Pediatr Surg. 1995;130:604–11.

    Article  Google Scholar 

  26. Tan Y-W, Adamson L, Forster C, Davies B, Sharkey D. Using serial oxygenation index as an objective predictor of survival for antenatally diagnosed congenital diaphragmatic hernia. J Pediatr Surg. 2012;47:1984–9.

    Article  Google Scholar 

  27. Tan Y-W, Ali K, Andradi G, Sasidharan L, Greenough A, Davenport M. Prognostic value of the oxygenation index to predict survival and timing of surgery in infants with congenital diaphragmatic hernia. J Pediatr Surg. 2019;54:1567–72.

    Article  Google Scholar 

  28. Lakshminrusimha S. The pulmonary circulation in neonatal respiratory failure. Clin Perinatol. 2012;39:655–83.

    Article  Google Scholar 

  29. Tourneux P, Rakza T, Bouissou A, Krim G, Storme L. Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension. J Pediatr. 2008;153:345–9.

    Article  CAS  Google Scholar 

  30. Schwartz SM, Vermilion RP, Hirschl RB. Evaluation of left ventricular mass in children with left-sided congenital diaphragmatic hernia. J Pediatr. 1994;125:447–51.

    Article  CAS  Google Scholar 

  31. Karpuz D, Giray D, Celik Y, Hallioglu O. Prognostic markers in congenital diaphragmatic hernia: Left ventricular diameter and pulmonary hypertension. Pediatr Int. 2018;60:122–6.

    Article  Google Scholar 

  32. Altit G, Bhombal S, Van Meurs K, Tacy TA. Diminished cardiac performance and left ventricular dimensions in neonates with congenital diaphragmatic hernia. Pediatr Cardiol. 2018;39:993–1000.

    Article  Google Scholar 

  33. Patel N, Lally PA, Kipfmueller F, Massolo AC, Luco M, Van Meurs KP, et al. Congenital Diaphragmatic Hernia Study Group. Ventricular dysfunction is a critical determinant of mortality in congenital diaphragmatic hernia. Am J Respir Crit Care Med. 2019;200:1522–30.

    Article  Google Scholar 

  34. Kinsella JP, Steinhorn RH, Mullen MP, Hopper RK, Keller RL, Ivy DD, Pediatric Pulmonary Hypertension Network (PPHNet). et al. The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J Pediatr. 2018;197:17–22.

    Article  Google Scholar 

  35. Moenkemeyer F, Patel N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia. Pediatr Crit Care Med. 2014;15:49–55.

    Article  Google Scholar 

  36. Denney S, Howley LW, Hodges M, Liechty KW, Marwan AI, Gien J, et al. Impact of objective echocardiographic criteria for timing of congenital diaphragmatic hernia repair. J Pediatr. 2018;192:99–104.e4.

    Article  Google Scholar 

  37. Lakshminrusimha S, Keszler M, Kirpalani H, Van Meurs K, Chess P, Ambalavanan N, et al. Milrinone in congenital diaphragmatic hernia—a randomized pilot trial: study protocol, review of literature and survey of current practices. Matern Health Neonatol Perinatol. 2017;3:27.

    Article  Google Scholar 

  38. Shanmugam H, Brunelli L, Botto LD, Krikov S, Feldkamp ML. Epidemiology and prognosis of congenital diaphragmatic hernia: a population-based cohort study in Utah. Birth Defects Res. 2017;109:1451–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

No outside honorarium, grant, or other form of payment was provided to anyone to produce the manuscript. MJY and BAY contributed to the conception and design of the study, data collection and analysis, and manuscript preparation; SF, KR, and CCY contributed to conception and design as well as manuscript preparation. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Michelle J. Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M.J., Fenton, S., Russell, K. et al. Left-sided congenital diaphragmatic hernia: can we improve survival while decreasing ECMO?. J Perinatol 40, 935–942 (2020). https://doi.org/10.1038/s41372-020-0615-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-0615-3

This article is cited by

Search

Quick links