Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurodevelopmental outcomes following bevacizumab treatment for retinopathy of prematurity: a systematic review and meta-analysis

Abstract

Objective

To systematically review the studies exploring the association between bevacizumab and neurodevelopmental outcomes.

Methods

Embase, Medline, CINAHL, and Cochrane Library databases were searched for studies examining neurodevelopmental outcomes of preterm infants treated with bevacizumab compared to laser ablation or cryotherapy for severe retinopathy of prematurity (ROP).

Results

Thirteen studies (clinical trial = 1; cohort studies = 12) were included. Random-effects model meta-analysis showed significant increased odds of cognitive impairment associated with bevacizumab treatment on both unadjusted (unadjusted odds ratio (OR) 1.61; 95% confidence interval (CI) 1.12, 2.30) and adjusted analyses (adjusted OR 1.90; 95% CI 1.22, 2.97). Infants treated with bevacizumab for severe ROP had significantly lower Bayley-III cognitive (mean difference (MD) −1.66; 95% CI −3.21, −0.12), and language composite scores (MD −5.50; 95% CI −8.24, −2.76) compared to infants treated with laser ablation or cryotherapy.

Conclusion

Bevacizumab treatment for severe ROP is associated with increased risk of cognitive impairment and lower cognitive and language scores in preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram.
Fig. 2: Forest plot.
Fig. 3: Forest plot.

Similar content being viewed by others

References

  1. Ann Hellström Lois EH Smith, Olaf Dammann. Retinopathy of prematurity. The Lancet. 2013;382:1445–57.

    Google Scholar 

  2. Msall ME, Phelps DL, DiGaudio KM, Dobson V, Tung B, McClead RE, et al. Severity of neonatal retinopathy of prematurity is predictive of neurodevelopmental functional outcome at age 5.5 years. Pediatrics. 2000;106:998–1005.

    CAS  PubMed  Google Scholar 

  3. Schmidt B, Davis PG, Asztalos EV, Solimano A, Roberts RS. Association between severe retinopathy of prematurity and nonvisual disabilities at age 5 years. JAMA. 2014;311:523–5.

    CAS  PubMed  Google Scholar 

  4. Glass TJA, Chau V, Gardiner J, Fonng J, Vinall J, Zwicker JG, et al. Severe retinopathy of prematurity predicts delayed white matter maturation and poorer neurodevelopment. Arch Dis Child Fetal Neonatal Ed. 2017;102:F532–7.

    PubMed  Google Scholar 

  5. Msall ME. The retina as a window to the brain in vulnerable neonates. Pediatrics. 2006;117:2287–9.

    PubMed  Google Scholar 

  6. Mintz-Hittner HA. Treatment of retinopathy of prematurity with vascular endothelial growth factor inhibitors. Early Hum Dev. 2012;88:937–41.

    CAS  PubMed  Google Scholar 

  7. Mintz-Hittner HA, Kennedy KA, Chuang AZ, BEAT-ROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl J Med. 2011;364:603–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cernichiaro-Espinosa LA, OlguinManriquez FJ, Henaine-Berra A, GarciaAguirre G, Quiroz-Mercado H, MartinezCastellanos MA. New insights in diagnosis and treatment for retinopathy of prematurity. Int Ophthalmol. 2016;36:751–60.

    PubMed  Google Scholar 

  9. Good WV. Early treatment for retinopathy of prematurity cooperative group. final results of the early treatment for retinopathy of prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc. 2004;102:233–48.

    PubMed  PubMed Central  Google Scholar 

  10. Sankar MJ, Sankar J, Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev. 2018;1:CD009734.

    PubMed  Google Scholar 

  11. Micieli JA, Surkont M, Smith AF. A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am J Ophthalmol. 2009;148:536.

    CAS  PubMed  Google Scholar 

  12. Hu J, Blair MP, Shapiro MJ, Lichtenstein SJ, Galasso JM, Kapur R. Reactivation of retinopathy of prematurity after bevacizumab injection. Arch Ophthalmol. 2012;130:1000.

    CAS  PubMed  Google Scholar 

  13. Hwang CK, Hubbard GB, Hutchinson AK, Lambert SR. Outcomes after intravitreal bevacizumab versus laser photocoagulation for retinopathy of prematurity: a 5-year retrospective analysis. Ophthalmology. 2015;122:1008–15. Epub 2015 Feb 14.

    PubMed  Google Scholar 

  14. Nicoară SD, Nascutzy C, Cristian C, Irimescu I, Ștefănuț AC, Zaharie G, et al. Outcomes and prognostic factors of intravitreal bevacizumab monotherapy in zone I Stage 3+ and aggressive posterior retinopathy of prematurity. J Ophthalmol. 2015;2015:102582. Epub 2015 9 27.

    PubMed  PubMed Central  Google Scholar 

  15. Chen SN, Lian I, Hwang YC, Chen YH, Chang YC, Lee KH, et al. Intravitreal anti-vascular endothelial growth factor treatment for retinopathy of prematurity: comparison between Ranibizumab and Bevacizumab. Retina. 2015;35:667–74.

    CAS  PubMed  Google Scholar 

  16. Fleck BW. Management of retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2013;98:F454. Epub 2013 Jun 27

    PubMed  Google Scholar 

  17. Reynolds JD. Bevacizumab for retinopathy of prematurity. N. Engl J Med. 2011;364:677.

    CAS  PubMed  Google Scholar 

  18. Wu WC, Lien R, Liao PJ, Wang NK, Chen YP, Chao AN, et al. Serum levels of vascular endothelial growth factor and related factors after intravitreous bevacizumab injection for retinopathy of prematurity. JAMA Ophthalmol. 2015;133:391–7.

    PubMed  Google Scholar 

  19. Lepore D, Quinn GE, Molle F, Baldascino A, Orazi L, Sammartino M, et al. Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology. 2014;121:2212–2219 6.

    PubMed  Google Scholar 

  20. Martinez-Castellanos MA, Schwartz S, Hernandez-Rojas ML, Kon-Jara VA, Garcia-Aguirre G, Guer- rero-Naranjo JL, et al. Long-term effect of antiangiogenic therapy for retinopathy of prematurity up to 5 years of follow-up. Retina. 2013;33:329–38.

    CAS  PubMed  Google Scholar 

  21. Jalali S, Balakrishnan D, Zeynalova Z, Padhi TR, Rani PK. Serious adverse events and visual outcomes of rescue therapy using adjunct bevacizumab to laser and surgery for retinopathy of prematurity. The Indian Twin Cities Retinopathy of Prematurity Screening database report number 5. Arch Dis Child Fetal Neonatal Ed. 2013;98:F327–33.

    PubMed  Google Scholar 

  22. Käll A. Is Avastin the right choice of treatment for retinopathy of prematurity? Acta Paediatr. 2012;101:796–8.

    PubMed  Google Scholar 

  23. Darlow BA, Ells AL, Gilbert CE, Gole GA, Quinn GE. Are we there yet? Bevacizumab therapy for retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2013;98:F170–4.

    PubMed  Google Scholar 

  24. Sato T, Wada K, Arahori H, Kuno M, Imoto K, Iwashashi-Shima C, et al. Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol. 2012;153:327–33.

    CAS  PubMed  Google Scholar 

  25. Kennedy KA, Mintz-Hittner HA. Medical and developmental outcomes of bevacizumab versus laser for retinopathy of prematurity. J AAPOS. 2018;22:61–5.e1.

    PubMed  Google Scholar 

  26. Raghuram K, Isaac M, Yang J, AlAli A, Mireskandari K, Ly LG, et al. Neurodevelopmental outcomes in infants treated with intravitreal bevacizumab versus laser. J Perinatol. 2019;39:1300–8.

    CAS  PubMed  Google Scholar 

  27. Rodriguez SH, Peyton C, Lewis K, Andrews B, Greenwald MJ, Schreiber MD, et al. Neurodevelopmental outcomes comparing bevacizumab to laser for type 1 ROP. Ophthalmic Surg Lasers Imaging. Retina. 2019;50:337–43.

    Google Scholar 

  28. Natarajan G, Shankaran S, Nolen TL, Sridhar A, Kennedy KA, Hintz SR, et al. Neurodevelopmental outcomes of preterm infants with retinopathy of prematurity by treatment. Pediatrics. 2019;144:e20183537.

    PubMed  Google Scholar 

  29. Morin J, Luu TM, Superstein R, Ospina LH, Lefebvre F, Simard M-N, et al. Neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics. 2016;137:4.

    Google Scholar 

  30. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Chichester, West Sussex, UK: Wiley; 2011.

    Google Scholar 

  31. Hardy RJ, Palmer EA, Dobson V, Summers CG, Phelps DL, Quinn GE. Cryotherapy for Retinopathy of Prematurity Cooperative Group et al. Risk analysis of prethreshold retinopathy of prematurity. Arch Ophthalmol. 2003;121:1697–170114662587.

    PubMed  Google Scholar 

  32. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.

    CAS  PubMed  Google Scholar 

  33. Bayley N. Bayley scales of infant development. 2nd ed. San Antonio, TX: Psychological Corporation; 1993.

  34. Albers CA, Grieve AJ. Test Review: Bayley, N. (2006). Bayley scales of infant and toddler development– Third Edition. San Antonio, TX: Harcourt Assessment. Psychol Assess. 2007;25:180–90.

    Google Scholar 

  35. Cochrane. GRADE handbook for grading quality of evidence and strength of recommendations. In: Schünemann H, Brożek J, Guyatt G, Oxman A, editors. McMaster University, Canada: Cochrane; 2015.

  36. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    PubMed  PubMed Central  Google Scholar 

  37. Arima M, Akiyama M, Fujiwara K, Mori Y, Inoue H, Seki E, et al. Neurodevelopmental outcomes following intravitreal bevacizumab injection in Japanese preterm infants with type 1 retinopathy of prematurity. PLoS One. 2020;15:e0230678.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lien R, Yu M-H, Hsu K-H, Liao P-J, Chen Y-P, Lai C-C, et al. Neurodevelopmental outcomes in infants with retinopathy of prematurity and bevacizumab treatment. PLoS One. 2016;11:e0148019.

    PubMed  PubMed Central  Google Scholar 

  39. Zayek M, Parker K, Rydzewska M, Rifai A, Bhat R, Eyal F, et al. Bevacizumab for retinopathy in preterm infants: two-year developmental follow-up. J Investig Med. 2020;68:588.

    Google Scholar 

  40. Tiffany A, Chen BS, Ira H, Schachar MD, Darius M, Moshfeghi MD. Outcomes of intravitreal bevacizumab and diode laser photocoagulation for treatment-warranted retinopathy of prematurity. Ophthalmic Surg Lasers Imaging Retin. 2018;49:126–31.

    Google Scholar 

  41. Mantagos S, Wu C, Winter T. Mortality rate for premature infants treated for rop with intravitreal antivascular endothelial growth factor (VEGF) medication vs retinal ablative surgery. J AAPOS. 2017;21:e18.

    Google Scholar 

  42. Kong L, Dinh K, Schechet S, Coats D, Voigt R, Demny A, et al. Comparison of ocular and developmental outcomes in laser-and bevacizumab-treated infants with retinopathy of prematurity. Ophthalmol Res Int J. 2015;3:13–22.

    Google Scholar 

  43. Anand N, Blair MP, Greenwald MJ, Rodriguez SH. Refractive outcomes comparing primary laser to primary bevacizumab with delayed laser for type 1 ROP. J AAPOS. 2019;23:88E1–6.

    Google Scholar 

  44. Huddleston SM, Calderwood J, Hoehn ME. Comparing morbidity rates in retinopathy of prematurity treated with either intravitreal bevacizumab or conventional laser therapy. Investig Ophthalmol Vis Sci. 2014;55:2053.

    Google Scholar 

  45. Sato T, Wada K, Arahori H, Kuno N, Imotot K, Iwahashu-Shima C, et al. Serum concentrations of bevacizumab (Avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol. 2012;153:327–33.

    CAS  PubMed  Google Scholar 

  46. Kong L, Bhatt AR, Demny AB, Coats D, Li A, Rahman EZ, et al. Pharmacokinetics of bevacizumab and its effects on serum VEGF and IFG-1 in infants with retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2015;56:956–61.

    CAS  PubMed  Google Scholar 

  47. Wu W, Shih C, Lien R, Wang N, Chen Y, Chao A, et al. Serum vascular endothelial growth factor after bevacizumab or ranibizumab treatment for retinopathy of prematurity. Retina. 2016;0:1–8.

    Google Scholar 

  48. Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis. 2010;6:107–14.

    PubMed  PubMed Central  Google Scholar 

  49. Eichmann A, Thomas JL. Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med. 2013;3:1–16.

    Google Scholar 

  50. Stahl A, Lepore D, Fielder A, Fleck B, Reynolds J, Chiang M, et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial. Lancet. 2019;394:1551–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast track Research Funding Program. The funder had no role in conceiving the study design, collection, analysis and interpretation of the data, and decision to publish the study.

Author information

Authors and Affiliations

Authors

Contributions

MK and WP had full access to the data and take responsibility for the data integrity including accuracy of the data analysis. Concept/design: AR, MK, WP, AK, AKP. Acquisition, analysis, and interpretation of data: AR, MK, WP, AK, and AKP. Initial drafting of the manuscript: AR and MK. Critical revision for important intellectual content: AR. Statistical analysis: AR, MK, and WP. Administrative, technical, or material support: AR. Study supervision: AR.

Corresponding author

Correspondence to Abdul Razak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, M., Razak, A., Patel, W. et al. Neurodevelopmental outcomes following bevacizumab treatment for retinopathy of prematurity: a systematic review and meta-analysis. J Perinatol 41, 1225–1235 (2021). https://doi.org/10.1038/s41372-020-00884-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00884-9

This article is cited by

Search

Quick links