Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood biomarkers for neonatal hypoxic–ischemic encephalopathy in the presence and absence of sentinel events

Abstract

Objective

To determine if neonatal serum biomarkers representing different pathways of injury differ for cases of HIE of unknown cause to gain insight into timing and mechanism of injury.

Study design

In this cohort of all neonates with HIE admitted to our NICU, newborns with sentinel events were compared to those without during the 1st 3 days of life. Discard neonatal blood during the 1st 3 days of life was used for analysis.

Results

Of 277 babies with HIE treated with whole-body hypothermia, 190 (68.6%) had blood available for biomarker analysis. In total, 71 (37.4%) were born within our system, and 119 (62.6%) were transferred in from outside hospitals. Of these babies, 77 (40.5%) had a sentinel event and 113 (59.6%) had no sentinel event. Although the degree of metabolic acidosis was similar, repeated measures analysis showed that during the initial 3 days of life neonates born with HIE in the absence of sentinel events had 41.4% decreased VEGF (p = 0.027) and 62.5% increased IL-10 serum concentrations (p = 0.005).

Conclusion

These changes indicate that neonatal HIE in the absence of sentinel events is not related to an unrecognized acute intrapartum event and is possibly related to chronic hypoxia of lower severity or recovery from a remote event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Peebles PJ, Duello TM, Eickhoff JC, McAdams RM. Antenatal and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J Perinatol. 2020;40:63–9.

    Article  CAS  Google Scholar 

  2. American College of Obstetricians and Gynecologists, American Academy of Pediatrics. Neonatal encephalopathy and neurologic outcome, 2nd ed. Washington DC: American College of Obstetricians and Gynecologists (ACOG); 2014.

  3. Novak CM, Eke AC, Ozen M, Burd I, Graham EM. Risk factors for neonatal hypoxic-ischemic encephalopathy in the absence of sentinel events. Am J Perinatol. 2019;36:27–33.

    Article  Google Scholar 

  4. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86:329–38.

    Article  Google Scholar 

  5. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71.

  6. Martinez-Biarge M, Madero R, Gonzalez A, Quero J, Garcia-Alix A. Perinatal morbidity and risk of hypoxic-ischemic encephalopathy associated with intrapartum sentinel events. Am J Obstet Gynecol. 2012;206:148.e1–e7.

    Article  Google Scholar 

  7. Pfister RH, Bingham P, Edwards EM, Horbar JD, Kenny MJ, Inder T. et al. The Vermont Oxford Neonatal Encephalopathy Registry: rationale, methods, and initial results. BMC Pediatr. 2012;12:84.

    Article  Google Scholar 

  8. Higgins RD, Raju TN, Perlman J, Azzopardi DV, Blackmon LR, Clark RH, et al. Hypothermia and perinatal asphyxia: executive summary of the National Institute of Child Health and Human Development workshop. J Pediatr. 2006;148:170–5.

    Article  Google Scholar 

  9. Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE. A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol. 2008;199:587–95.

    Article  CAS  Google Scholar 

  10. Graham EM, Everett AD, Delpech JC, Northington FJ. Blood biomarkers for evaluation of perinatal encephalopathy: state of the art. Curr Opin Pediatr. 2018;30:199–203.

    Article  Google Scholar 

  11. Murray DM. Biomarkers in neonatal hypoxic-ischemic encephalopathy-Review of the literature to date and future directions for research. Handb Clin Neurol. 2019;162:281–93.

    Article  Google Scholar 

  12. Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181:129–33.

    Article  CAS  Google Scholar 

  13. Shankaran S, Barnes PD, Hintz SR, Laptook AR, Zaterka-Baxter KM, McDonald SA, et al. Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2012;97:F398–404.

    PubMed  Google Scholar 

  14. Dietrick B, Molloy E, Massaro AN, Strickland T, Zhu J, Slevin M, et al. Plasma and CSF candidate biomarkers of neonatal encephalopathy severity and neurodevelopmental outcomes. J Pediatr. 2020;S0022-3476(20)30832-5. https://doi.org/10.1016/j.jpeds.2020.06.078. [Online ahead of print].

  15. Cheung CY. Vascular endothelial growth factor: possible role in fetal development and placental function. J Soc Gynecol Investig. 1997;4:169–77.

    Article  CAS  Google Scholar 

  16. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88:1474–80.

    Article  CAS  Google Scholar 

  17. Lv H, Wang Q, Wu S, Yang L, Ren P, Yang Y, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta. 2015;450:282–97.

    Article  CAS  Google Scholar 

  18. Brownbill P, Mills TA, Soydemir DF, Sibley CP. Vasoactivity to and endogenous release of vascular endothelial growth factor in the in vitro perfused human placental lobule from pregnancies complicated by preeclampsia. Placenta. 2008;29:950–5.

    Article  CAS  Google Scholar 

  19. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Investig. 2003;111:649–58.

    Article  CAS  Google Scholar 

  20. Aly H, Hassanein S, Nada A, Mohamed MH, Atef SH, Atiea W. Vascular endothelial growth factor in neonates with perinatal asphyxia. Brain Dev. 2009;31:600–4.

    Article  Google Scholar 

  21. Temburni MK, Jacob MH. New functions for glia in the brain. Proc Natl Acad Sci USA. 2001;98:3631–2.

    Article  CAS  Google Scholar 

  22. Mackenzie F, Ruhrberg C. Diverse roles for VEGF-A in the nervous system. Development. 2012;139:1371–80.

    Article  CAS  Google Scholar 

  23. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem. 2017;292:762–70.

    Article  CAS  Google Scholar 

  24. Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM. Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 2013;4:189–200.

    Article  CAS  Google Scholar 

  25. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  CAS  Google Scholar 

  26. Ni Y, May V, Braas K, Osol G. Pregnancy augments uteroplacental vascular endothelial growth factor gene expression and vasodilator effects. Am J Physiol. 1997;273:H938–44.

    CAS  PubMed  Google Scholar 

  27. Bouloumie A, Schini-Kerth VB, Busse R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res. 1999;41:773–80.

    Article  CAS  Google Scholar 

  28. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156:965–76.

    Article  CAS  Google Scholar 

  29. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Investig. 2012;122:2454–68.

    Article  CAS  Google Scholar 

  30. Carr DJ, Wallace JM, Aitken RP, Milne JS, Mehta V, Martin JF, et al. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies. Hum Gene Ther. 2014;25:375–84.

    Article  CAS  Google Scholar 

  31. Swanson AM, Rossi CA, Ofir K, Mehta V, Boyd M, Barker H, et al. Maternal therapy with Ad.VEGF-A165 increases fetal weight at term in a guinea-pig model of fetal growth restriction. Hum Gene Ther. 2016;27:997–1007.

    Article  CAS  Google Scholar 

  32. Spencer R, Ambler G, Brodszki J, Diemert A, Figueras F, Gratacos E, et al. EVERREST prospective study: a 6-year prospective study to define the clinical and biological characteristics of pregnancies affected by severe early onset fetal growth restriction. BMC Pregnancy Childbirth. 2017;17:43.

    Article  Google Scholar 

  33. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998;57:874–82.

    Article  CAS  Google Scholar 

  34. Howell KR, Armstrong J. Vascular Endothelial Growth Factor (VEGF) in neurodevelopmental disorders. Curr Behav Neurosci Rep. 2017;4:299–308.

    Article  Google Scholar 

  35. Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, et al. Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci USA. 2011;108:5081–6.

    Article  CAS  Google Scholar 

  36. Wang YC, Shi CC, Ni H. Clinical significance of serum interleukin 10 levels in neonatal hypoxic ischemic encephalopathy. J Appl Clin Pediatr. 2003;18:442–3.

    Google Scholar 

  37. Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, et al. Role of interleukin-10 in acute brain injuries. Front Neurol. 2017;8:244.

    Article  Google Scholar 

  38. Ergenekon E, Gucuyener K, Erbas D, Aral S, Koc E, Atalay Y. Cerebrospinal fluid and serum vascular endothelial growth factor and nitric oxide levels in newborns with hypoxic ischemic encephalopathy. Brain Dev. 2004;26:283–6.

    Article  Google Scholar 

Download references

Funding

Funded by NICHD R01HD086058 “Adult Biomarkers in Neonatal Brain Injury and Development”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest M. Graham.

Ethics declarations

Conflict of interest

Under a license agreement between ImmunArray Ltd. and the Johns Hopkins University, the University and ADE are entitled to royalties on an invention described in this study and discussed in this publication. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broni, E.K., Eke, A.C., Vaidya, D. et al. Blood biomarkers for neonatal hypoxic–ischemic encephalopathy in the presence and absence of sentinel events. J Perinatol 41, 1322–1330 (2021). https://doi.org/10.1038/s41372-020-00850-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00850-5

This article is cited by

Search

Quick links