Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Use of vasopressin in neonatal hypertrophic obstructive cardiomyopathy: case series

Abstract

Objective

To determine the effect of vasopressin on arterial blood pressure in infants with neonatal hypertrophic obstructive cardiomyopathy (HOCM).

Study design

Retrospective case study in Neonatal ICU involving six infants; five born to mothers with diabetes mellitus (mean gestational age 37.5 ± 0.9 weeks). Vasopressin infusion was started at a mean dose of 0.3 ± 0.2 mU/kg/min.

Result

Initiation of vasopressin was followed by improved mean (p = 0.004), systolic (p = 0.028), and diastolic (p = 0.009) arterial pressure within 2 h. Heart rate (p = 0.025) and oxygen requirement (p = 0.021) also declined after initiation. Serum sodium declined initially and recovered by 72 h (p = 0.017).

Conclusion

Although there is limited experience with vasopressin use in neonatal HOCM, our case series suggests it may be beneficial for improving systemic hypotension and stabilization of hemodynamics. The potential for hyponatremia is high, necessitating careful fluid/electrolyte management. A prospective randomized trial is necessary to confirm safety and efficacy of vasopressin treatment in neonatal HOCM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment Algorithm.
Fig. 2: Changes in clinical parameters from immediately prior to vasopressin initiation to 2, 6, 12, and 24 h after the start of treatment.
Fig. 3: Renal parameters immediately prior to and following vasopressin administration.

Similar content being viewed by others

References

  1. Henry W, Clark CE, Epstein SE. Asymmetric septal hypertrophy; echocardiographic identification of the pathognomonic anatomic abnormality of IHSS. Circulation. 1973;47:25–33.

    Google Scholar 

  2. Zielinsky P, Piccoli AL Jr. Myocardial hypertrophy and dysfunction in maternal diabetes. Early Hum Dev. 2012;88:273–8.

    PubMed  Google Scholar 

  3. Halliday H. Hypertrophic cardiomyopathy in infants of poorly-controlled diabetic mothers. Arch Dis Child. 1981;56:258–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mormile R. Neonate of diabetic mothers: the starting point for developing novel therapeutic approaches to the ischemic heart and brain? Med Hypotheses. 2016;96:75–7.

    PubMed  Google Scholar 

  5. Franzese A, Valerio G, Cicarelli NP, De Filippo G, Iannucci MP, Alfonsi L, et al. Severe hypertrophic cardiomyopathy in an infant of a diabetic mother. Diabetes Care. 1997;20:676–7.

    CAS  PubMed  Google Scholar 

  6. Robinson B, Eshaghpour E, Ewing S, Baumgart S. Hypertrophic obstructive cardiomyopathy, in an infant of a diabetic mother: Support by extracorporeal membrane oxygenation and treatment with β-adrenergic blockade and increased intravenous fluid administration. ASAIO J. 1998;44:845–7.

    CAS  PubMed  Google Scholar 

  7. Way G, Wolfe RR, Eshaghpour E, Bender RL, Jaffe RB, Ruttenberg HD. The natural history of hypertrophic cardiomyopathy in infants of diabetic mothers. J Pediatr. 1979;95:1020–5.

    CAS  PubMed  Google Scholar 

  8. Ullmo S, Vial Y, Di Bernardo S, Roth-Kleiner M, Mivelaz Y, Sekarski N, et al. Pathologic ventricular hypertrophy in the offspring of diabetic mothers: a retrospective study. Eur Heart J. 2007;28:1319–25.

    CAS  PubMed  Google Scholar 

  9. Al-Biltagi M, Tolba OA, Rowisha MA, Mahfouz AS, Elewa MA. Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr Cardiol. 2015;36:445–53.

    PubMed  Google Scholar 

  10. McMahon J, Berry PJ, Joffe HS. Fatal hypertrophic cardiomyopathy in an infant of a diabetic mother. Pediatr Cardiol. 1990;11:211–2.

    CAS  PubMed  Google Scholar 

  11. Goldberg J, Mery CM, Griffiths PS, Parekh DR, Welty SE, Bronicki RA, et al. Extracorporeal membrane oxygenation support in severe hypertrophic obstructive cardiomyopathy associated with persistent pulmonary hypertension in an infant of a diabetic mother. Circulation. 2014;130:1923–5.

    PubMed  Google Scholar 

  12. Giesinger R, McNamara PJ. Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. Semin Perinatol. 2016;40:174–88.

    PubMed  Google Scholar 

  13. Holmes C, Landry DW, Granton JT. Science Review: Vasopressin and the cardiovascular system part 2—clinical physiology. Crit Care. 2004;8:15–23.

    PubMed  Google Scholar 

  14. Holmes C, Patel BM, Russell JA, Walley KR. Physiology of vasopressin relevant to management of septic shock. Chest. 2001;120:989–1002.

    CAS  PubMed  Google Scholar 

  15. Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Eur J Echocardiogr. 2011;12:715–36.

    PubMed  Google Scholar 

  16. Hébert A, Lavoie PM, Giesinger RE, Ting YT, Finan E, Singh Y, et al. Evolution of training guidelines for echocardiography performed by the neonatologist: toward hemodynamic consultation. J Am Soc Echocardiogr. 2019;32:785–90.

    PubMed  Google Scholar 

  17. Kent A, Kecskes Z, Shadbolt B, Falk MC. Normative blood pressure data in the early neonatal period. Pediatr Nephrol. 2007;22:1335–41.

    PubMed  Google Scholar 

  18. Elmekkawi S, Mansour GM, Elsafty MS, Hassanin AS, Laban M, Elsayed HM. Prediction of fetal hypertrophic cardiomyopathy in diabetic pregnancies compared with postnatal outcome. Clin Med Insights Women’s Health. 2015;8:39–43.

    PubMed  Google Scholar 

  19. Kozák-Bárány A, Jokinen E, Kero P, Tuominen J, Välimäki RT. Impaired left ventricular diastolic function in newborn infants of mothers with pregestational or gestational diabetes with good glycemic control. Early Hum Dev. 2004;77:13–22.

    PubMed  Google Scholar 

  20. Sidebotham S, Le Grice IJ. Physiology and pathophysiology. In: Sidebotham D, Gillham M, McKee A, Levy JH, editors. Cardiothoracic critical care. Philadelphia: Butterworth Heinemann Elsevier; 2007. p. 3–27.

  21. Meyer T, Krishnamani R, Gaasch WH. Acute heart failure and pulmonary edema. In: Jeremias A, Brown DL, editors. Cardiac intensive care. Philadelphia: Saunders Elsevier; 2010. p. 275–92.

  22. Feher J. Quantitative human physiology. Boston: Academic Press; 2012.

    Google Scholar 

  23. Vela-Huerta M, Aguilera-López A, Alarcón-Santos S, Amador N, Aldana-Valenzuela C, Heredia A. Cardiopulmonary adaptation in large for gestastional age infants of diabetic and nondiabetic mothers. Acta Paediatr. 2007;96:1303–7.

    CAS  PubMed  Google Scholar 

  24. Baldasso E, Ramos Garcia PC, Piva JP, Einloft PR. Hemodynamic and metabolic effects of vasopressin infusion in children with shock. J Pediatr (Rio J). 2007;83:S137–45.

    Google Scholar 

  25. Meyer S, Gottschling S, Baghai A, Wurm D, Gortner L. Arginine-vasopressin in catecholamine-refractory septic versus non-septic shock in extremely low birth weight infants with acute renal injury. Crit Care. 2006;10:R71.

    PubMed  PubMed Central  Google Scholar 

  26. Russell J. Bench-to-bedside review: vasopressin in the management of septic shock. Crit Care. 2011;15:226.

    PubMed  PubMed Central  Google Scholar 

  27. Liedel J, Meadow W, Nachman J, Koogler T, Kahana MD. Use of vasopressin in refractory hypotension in children with vasodilatatory shock: five cases and a review of the literature. Pediatr Crit Care Med. 2002;3:15–8.

    PubMed  Google Scholar 

  28. Masutani S, Senzaki H, Ishido H, Taketazu M, Matsunaga T, Kobayashi T, et al. Vasopressin in the treatment of vasodilatory shock in children. Pediatr Int. 2005;47:132–6.

    CAS  PubMed  Google Scholar 

  29. Vasudevan A, Lodha R, Kabra SK. Vasopressin infusion in children with catecholamine-resistant septic shock. Acta Paediatr. 2005;94:380–3.

    CAS  PubMed  Google Scholar 

  30. Argenziano M, Choudhri AF, Oz MC, Rose EA, Smith CR, Landry DW. A prospective randomized trial of arginine vasopressin in the treatment of vasodilatory shock after left ventricular assist device placement. Circulation. 1997;96:II-286–90.

    Google Scholar 

  31. Argenziano M, Chen JM, Choudhri AF, Cullinane S, Garfein E, Weinberg AD, et al. Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent. J Thorac Cardiovasc Surg. 1998;116:973–80.

    CAS  PubMed  Google Scholar 

  32. Argenziano M, Chen JM, Cullinane S, Choudhri AF, Rose EA, Smith CR, et al. Arginine vasopressin in the management of vasodilatory hypotension after cardiac transplantation. J Heart Lung Transpl. 1999;18:814–7.

    CAS  Google Scholar 

  33. Rosenzweig E, Starc TH, Chen JM, Cullinane S, Timchak DM, Gersony WM, et al. Intravenous arginine-vasopressin in children with vasodilatatory shock after cardiac surgery. Circulation. 1999;100:II182–6.

    CAS  PubMed  Google Scholar 

  34. Patel B, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–82.

    CAS  PubMed  Google Scholar 

  35. Chen J, Cullinane S, Spanier TB, Artrip JH, John R, Edwards NM, et al. Vasopressin deficiency and pressor hypersensitivity in hemodynamically unstable organ donors. Circulation. 1999;100:II244–6.

    CAS  PubMed  Google Scholar 

  36. Dünser M, Mayr AJ, Stallinger A, Ulmer H, Ritsch N, Knotzer H, et al. Cardiac performance during vasopressin infusion in postcardiotomy shock. Intensive Care Med. 2002;28:746–51.

    PubMed  Google Scholar 

  37. Gold J, Cullinane S, Chen J, Oz MC, Oliver JA, Landry DW. Vasopressin as an alternative to norepinephrine in the treatment of milrinone-induced hypotension. Crit Care Med. 2000;28:249–52.

    CAS  PubMed  Google Scholar 

  38. Holmes C, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27:1416–21.

    CAS  PubMed  Google Scholar 

  39. Kaga M, Matsuda T, Watanabe T, Onodera S, Watanabe S, Usuda H, et al. Renal vasodilatory action of arginine vasopressin in extremely low birth weight infants. Tohoku J Exp Med. 2013;231:159–64.

    CAS  PubMed  Google Scholar 

  40. Bidegain M, Greenberg R, Simmons C, Dang C, Cotten CM, Smith PB. Vasopressin for refractory hypotension in extremely low birth weight infants. J Pediatr. 2010;157:502–4.

    PubMed  PubMed Central  Google Scholar 

  41. Ikegami H, Funato M, Tamai H, Wada H, Nabetani M, Nishihara M. Low-dose vasopressin infusion therapy for refractory hypotension in ELBW infants. Pediatr Int. 2010;52:368–73.

    CAS  PubMed  Google Scholar 

  42. Malay M, Ashton RC Jr, Landry DW, Townsend RN. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47:699–703.

    CAS  PubMed  Google Scholar 

  43. Landry D, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–95.

    CAS  PubMed  Google Scholar 

  44. Okamura T, Ayajiki K, Fujioka H, Toda N. Mechanisms underlying arginine vasopressin-induced relaxation in monkey isolated coronary arteries. J Hypertens. 1999;17:673–8.

    CAS  PubMed  Google Scholar 

  45. Vanhoutte P, Katusic ZS, Shepherd JT. Vasopressin induces endothelium-dependent relaxations of cerebral and coronary, but not of systemic arteries. J Hypertens. 1984;2:S421–2.

    CAS  Google Scholar 

  46. Katusic Z, Shepherd JT, Vanhoutte PM. Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ Res. 1984;55:575–9.

    CAS  PubMed  Google Scholar 

  47. Boyle WI, Segel LD. Attenuation of vasopressin-mediated coronary constriction and myocardial depression in the hypoxic heart. Circ Res. 1990;66:710–21.

  48. Maybauer M, Enkhbaatar P, Traber DL. Physiology of the vasopressin receptors. Best Pract Res Clin Anaesthesiol. 2008;22:253–63.

    CAS  PubMed  Google Scholar 

  49. Mulholland H, Casey F, Brown D, Corrigan N, Quinn M, McCord B, et al. Application of a low cost telemedicine link to the diagnosis of neonatal congenital heart defects by remote consultation. Heart. 1999;82:217–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohamed A, Nasef N, Shah V, McNamara PJ. Vasopressin as a rescue therapy for pulmonary hypertension in neonates: case series. Pediatr Crit Care Med. 2014;15:148–54.

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Carlos Zozaya, Clinical Fellow in Neonatology at The Hospital for Sick Children, Canada, for his assistance with data collection for the study.

Author information

Authors and Affiliations

Authors

Contributions

PJM designed the study. SMB and KLR undertook data collection. SMB and REG processed the data and performed the analysis and interpretation. REG and PJM designed the figures. SMB wrote the draft manuscript. All authors participated in revision of the manuscript and approved the final manuscript for publication.

Corresponding author

Correspondence to Patrick J. McNamara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, S.M., Riley, K.L., Giesinger, R.E. et al. Use of vasopressin in neonatal hypertrophic obstructive cardiomyopathy: case series. J Perinatol 41, 126–133 (2021). https://doi.org/10.1038/s41372-020-00824-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00824-7

This article is cited by

Search

Quick links