Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving the quality of neonatal acute kidney injury care: neonatal-specific response to the 22nd Acute Disease Quality Initiative (ADQI) conference

Abstract

With the adoption of standardized neonatal acute kidney injury (AKI) definitions over the past decade and the concomitant surge in research studies, the epidemiology of and risk factors for neonatal AKI have become much better understood. Thus, there is now a need to focus on strategies designed to improve AKI care processes with the goal of reducing the morbidity and mortality associated with neonatal AKI. The 22nd Acute Dialysis/Disease Quality Improvement (ADQI) report provides a framework for such quality improvement in adults at risk for AKI and its sequelae. While many of the concepts can be translated to neonates, there are a number of specific nuances which differ in neonatal AKI care. A group of experts in pediatric nephrology and neonatology came together to provide neonatal-specific responses to each of the 22nd ADQI consensus statements.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: ABCD evaluation and 4Ms.
Fig. 2: Quality improvement methodology.

References

  1. Stoops C, Boohaker L, Sims B, Griffin R, Selewski DT, Askenazi D, et al. The association of intraventricular hemorrhage and acute kidney injury in premature infants from the assessment of the worldwide acute kidney injury epidemiology in neonates (AWAKEN) study. Neonatology. 2019;116:321–30.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Selewski DT, Gist KM, Nathan AT, Goldstein SL, Boohaker LJ, Akcan-Arikan A, et al. The impact of fluid balance on outcomes in premature neonates: a report from the AWAKEN study group. Pediatr Res. 2020;87:550–7.

    CAS  PubMed  Article  Google Scholar 

  3. Kirkley MJ, Boohaker L, Griffin R, Soranno DE, Gien J, Askenazi D, et al. Acute kidney injury in neonatal encephalopathy: an evaluation of the AWAKEN database. Pediatr Nephrol. 2019;34:169–76.

    PubMed  Article  Google Scholar 

  4. Charlton JR, Boohaker L, Askenazi D, Brophy PD, Fuloria M, Gien J, et al. Late onset neonatal acute kidney injury: results from the AWAKEN Study. Pediatr Res. 2019;85:339–48.

    PubMed  Article  Google Scholar 

  5. Charlton JR, Boohaker L, Askenazi D, Brophy PD, D’Angio C, Fuloria M, et al. Incidence and risk factors of early onset neonatal AKI. Clin J Am Soc Nephrol. 2019;14:184.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Kraut EJ, Boohaker LJ, Askenazi DJ, Fletcher J, Kent AL. Incidence of neonatal hypertension from a large multicenter study [assessment of worldwide acute kidney injury epidemiology in neonates-AWAKEN]. Pediatr Res. 2018;84:279–89.

    PubMed  Article  Google Scholar 

  7. Bakhoum CY, Basalely A, Koppel RI, Sethna CB. Acute kidney injury in preterm infants with necrotizing enterocolitis. J Matern Fetal Neonatal Med. 2019;32:3185–90.

    PubMed  Article  Google Scholar 

  8. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1:184–94.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Ueno K, Seki S, Shiokawa N, Matsuba T, Miyazono A, Hazeki D, et al. Validation of acute kidney injury according to the modified KDIGO criteria in infants after cardiac surgery for congenital heart disease. Nephrology. 2019;24:294–300.

    CAS  PubMed  Article  Google Scholar 

  10. Srinivasan N, Schwartz A, John E, Price R, Amin S. Acute kidney injury impairs postnatal renal adaptation and increases morbidity and mortality in very low-birth-weight infants. Am J Perinatol. 2018;35:39–47.

    PubMed  Article  Google Scholar 

  11. Madsen NL, Goldstein SL, Frøslev T, Christiansen CF, Olsen M. Cardiac surgery in patients with congenital heart disease is associated with acute kidney injury and the risk of chronic kidney disease. Kidney Int. 2017;92:751–6.

    PubMed  Article  Google Scholar 

  12. Maqsood S, Fung N, Chowdhary V, Raina R, Mhanna MJ. Outcome of extremely low birth weight infants with a history of neonatal acute kidney injury. Pediatr Nephrol. 2017;32:1035–43.

    PubMed  Article  Google Scholar 

  13. Harer MW, Pope CF, Conaway MR, Charlton JR. Follow-up of acute kidney injury in neonates during childhood years (FANCY): a prospective cohort study. Pediatr Nephrol. 2017;32:1067–76.

    PubMed  Article  Google Scholar 

  14. Abitbol CL, Bauer CR, Montane B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol. 2003;18:887–93.

    PubMed  Article  Google Scholar 

  15. Crump C, Sundquist J, Sundquist K. Risk of hypertension into adulthood in persons born prematurely: a national cohort study. Eur Heart J. 2020;41:1542–50.

    PubMed  Article  Google Scholar 

  16. Calderon-Margalit R, Golan E, Twig G, Leiba A, Tzur D, Afek A, et al. History of childhood kidney disease and risk of adult end-stage renal disease. N. Engl J Med. 2018;378:428–38.

    PubMed  Article  Google Scholar 

  17. Low Birth W. Nephron number working G. The impact of kidney development on the life course: a consensus document for action. Nephron. 2017;136:3–49.

    Article  Google Scholar 

  18. Stritzke A, Thomas S, Amin H, Fusch C, Lodha A. Renal consequences of preterm birth. Mol Cell Pediatr. 2017;4:2.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Luyckx VA. Preterm birth and its impact on renal health. Semin Nephrol. 2017;37:311–9.

    PubMed  Article  Google Scholar 

  20. Chaturvedi S, Ng KH, Mammen C. The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol. 2017;32:227–41.

    PubMed  Article  Google Scholar 

  21. Khalsa DDK, Beydoun HA, Carmody JB. Prevalence of chronic kidney disease risk factors among low birth weight adolescents. Pediatr Nephrol. 2016;31:1509–16.

    PubMed  Article  Google Scholar 

  22. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54:248–61.

    PubMed  Article  Google Scholar 

  23. Zappitelli M, Ambalavanan N, Askenazi DJ, Moxey-Mims MM, Kimmel PL, Star RA, et al. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr Res. 2017;82:569–73.

    PubMed  Article  Google Scholar 

  24. Jetton JG, Sorenson M. Pharmacological management of acute kidney injury and chronic kidney disease in neonates. Semin Fetal Neonatal Med. 2017;22:109–15.

    PubMed  Article  Google Scholar 

  25. Kashani K, Rosner MH, Haase M, Lewington AJP, O’Donoghue DJ, Wilson FP, et al. Quality improvement goals for acute kidney injury. Clin J Am Soc Nephrol. 2019;14:941–53.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Silver SA, Nadim MK, O’Donoghue DJ, Wilson FP, Kellum JA, Mehta RL, et al. Community health care quality standards to prevent acute kidney injury and its consequences. Am J Med. 2020;133:552–60.e3.

    CAS  PubMed  Article  Google Scholar 

  27. Rewa OG, Tolwani A, Mottes T, Juncos LA, Ronco C, Kashani K, et al. Quality of care and safety measures of acute renal replacement therapy: Workgroup statements from the 22nd acute disease quality initiative (ADQI) consensus conference. J Crit Care. 2019;54:52–7.

    PubMed  Article  Google Scholar 

  28. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30:505.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Romagnoli S, Ricci Z, Ronco C. Perioperative acute kidney injury: prevention, early recognition, and supportive measures. Nephron. 2018;140:105–10.

    CAS  PubMed  Article  Google Scholar 

  31. Perico N, Askenazi D, Cortinovis M, Remuzzi G. Maternal and environmental risk factors for neonatal AKI and its long-term consequences. Nat Rev Nephrol. 2018;14:688–703.

    CAS  PubMed  Article  Google Scholar 

  32. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140:e20171904.

    PubMed  Article  Google Scholar 

  33. Joseph C, Gattineni J. Proteinuria and hematuria in the neonate. Curr Opin Pediatr. 2016;28:202–8.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Ojala R, Ala-Houhala M, Harmoinen AP, Luukkaala T, Uotila J, Tammela O. Tubular proteinuria in pre-term and full-term infants. Pediatr Nephrol. 2006;21:68–73.

    PubMed  Article  Google Scholar 

  35. Jernigan SM. Hematuria in the newborn. Clin Perinatol. 2014;41:591–603.

    PubMed  Article  Google Scholar 

  36. Jones RW, Rochefort MJ, Baum JD. Increased insensible water loss in newborn infants nursed under radiant heaters. Br Med J. 1976;2:1347–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 2020;97:580–8.

    CAS  PubMed  Article  Google Scholar 

  38. Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132:e756–67.

    PubMed  Article  Google Scholar 

  39. Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 2016;90:212–21.

    PubMed  Article  Google Scholar 

  40. Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, et al. Baby NINJA (nephrotoxic injury negated by just-in-time action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr. 2019;215:e226.

    Article  CAS  Google Scholar 

  41. Selewski DT, Akcan-Arikan A, Bonachea EM, Gist KM, Goldstein SL, Hanna M, et al. The impact of fluid balance on outcomes in critically ill near-term/term neonates: a report from the AWAKEN study group. Pediatr Res. 2019;85:79–85.

    PubMed  Article  Google Scholar 

  42. Bhojani S, Stojanovic J, Melhem N, Maxwell H, Houtman P, Hall A, et al. The incidence of paediatric acute kidney injury identified using an AKI E-alert algorithm in six english hospitals. Front Pediatr. 2020;8:29.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Van Driest SL, Wang L, McLemore MF, Bridges BC, Fleming GM, McGregor TL, et al. Acute kidney injury risk-based screening in pediatric inpatients: a pragmatic randomized trial. Pediatr Res. 2020;87:118–24.

    PubMed  Article  CAS  Google Scholar 

  44. Sandokji I, Yamamoto Y, Biswas A, Arora T, Ugwuowo U, Simonov M, et al. A time-updated, parsimonious model to predict AKI in hospitalized children. J Am Soc Nephrol. 2020;31:1348–57.

    PubMed  Article  Google Scholar 

  45. Benoit SW, Goldstein SL, Dahale DS, Haslam DB, Nelson A, Truono K, et al. Reduction in nephrotoxic antimicrobial exposure decreases associated acute kidney injury in pediatric hematopoietic stem cell transplant patients. Biol Blood Marrow Transplant. 2019;25:1654–8.

    PubMed  Article  Google Scholar 

  46. Jetton JG, Guillet R, Askenazi DJ, Dill L, Jacobs J, Kent AL, et al. Assessment of worldwide acute kidney injury epidemiology in neonates: design of a retrospective cohort study. Front Pediatrics. 2016;4:68.

    Article  Google Scholar 

  47. Bagshaw SM. Acute kidney injury care bundles. Nephron. 2015;131:247–51.

    PubMed  Article  Google Scholar 

  48. Logan R, Davey P, Davie A, Grant S, Tully V, Valluri A, et al. Care bundles for acute kidney injury: a balanced accounting of the impact of implementation in an acute medical unit. BMJ Open Qual. 2018;7:e000392.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Meijers B, De Moor B, Van Den Bosch B. The acute kidney injury e-alert and clinical care bundles: the road to success is always under construction. Nephrol Dial Transplant. 2016;31:1761–3.

    PubMed  Article  Google Scholar 

  50. Schiffl H. Prevention of severe acute kidney injury by implementation of care bundles: some progress but still a lot of work ahead. Saudi J Kidney Dis Transplant. 2018;29:513–7.

    Article  Google Scholar 

  51. Selby NM, Kolhe NV. Care bundles for acute kidney injury: do they work? Nephron. 2016;134:195–9.

    PubMed  Article  Google Scholar 

  52. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30:505–15.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Vincent K, Murphy HJ, Ross JR, Twombley KE. Acute kidney injury guidelines are associated with improved recognition and follow-up for neonatal patients. Adv Neonatal Care. 2020;20:269–75.

    PubMed  Article  Google Scholar 

  54. Lorenzin A, Garzotto F, Alghisi A, Neri M, Galeano D, Aresu S, et al. CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations. Pediatr Nephrol. 2016;31:1659–65.

    PubMed  Article  Google Scholar 

  55. Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, et al. Smaller circuits for smaller patients: improving renal support therapy with Aquadex™. Pediatr Nephrol. 2016;31:853–60.

    PubMed  Article  Google Scholar 

  56. Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383:1807–13.

    PubMed  Article  Google Scholar 

  57. Mottes TA, Goldstein SL, Basu RK. Process based quality improvement using a continuous renal replacement therapy dashboard. BMC Nephrol. 2019;20:17.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Mottes T, Owens T, Niedner M, Juno J, Shanley TP, Heung M. Improving delivery of continuous renal replacement therapy: impact of a simulation-based educational intervention. Pediatr Crit Care Med. 2013;14:747–54.

    PubMed  Article  Google Scholar 

  59. Hackbarth R, Bunchman TE, Chua AN, Somers MJ, Baum M, Symons JM, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30:1116–21.

    CAS  PubMed  Article  Google Scholar 

  60. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter. Suppl. 2012;2:1–138.

  61. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55:316–25.

    PubMed  Article  Google Scholar 

  62. Selewski DT, Cornell TT, Lombel RM, Blatt NB, Han YY, Mottes T, et al. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 2011;37:1166–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Drs. Ravi Mehta, John Kellum, and Claudio Ronco for their leadership and vision in leading the ADQI collaborative. Furthermore, we are indebted to all of the members of the 22nd ADQI meeting who worked together to develop and articulate the importance of quality improvement in the field of AKI.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the concept and design; analysis and interpretation of data; drafting and revising of the manuscript, and they have approved the manuscript as submitted here.

Corresponding author

Correspondence to Matthew W. Harer.

Ethics declarations

Conflict of interest

The authors have no quality improvement related conflicts of interest to report that would have affected the writing of this publication. For AKI-related research, MZ is a member of the AKI adjudication committee for an industry sponsored study on NGAL as an AKI biomarker (Bioporto Inc.) DJA is consultant for Baxter, CHF solutions, Bioporo, and Medtronic. RKB is a consultant for Baxter, Biomerieux and BioPorto.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harer, M.W., Selewski, D.T., Kashani, K. et al. Improving the quality of neonatal acute kidney injury care: neonatal-specific response to the 22nd Acute Disease Quality Initiative (ADQI) conference. J Perinatol 41, 185–195 (2021). https://doi.org/10.1038/s41372-020-00810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00810-z

Further reading

Search

Quick links