Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors—implications for research on perinatal outcomes in the ECHO program

Abstract

Exposures to environmental chemicals and psychosocial stressors during pregnancy have been individually associated with adverse perinatal outcomes related to birthweight and gestational age, but are not often considered in combination. We review types of psychosocial stressors and instruments used to assess them and classes of environmental chemical exposures that are known to adversely impact perinatal outcomes, and identify studies relevant studies. We discuss the National Institutes of Health’s Environmental influences on Child Health Outcomes (ECHO) program that has combined existing longitudinal cohorts that include more than 50,000 children across the U.S. We describe future opportunities for investigators to use this important new resource for addressing relevant and critical research questions to maternal health. Of the 84 cohorts in ECHO, 38 collected data on environmental chemicals and psychosocial stressors and perinatal outcomes. The diverse ECHO pregnancy cohorts provide capacity to compare regions with distinct place-based environmental and social stressors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vesterinen HM, Morello-Frosch R, Sen S, Zeise L, Woodruff TJ. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence. PLOS ONE. 2017;12:e0176331.

    PubMed  PubMed Central  Google Scholar 

  2. Morello-Frosch R, Shenassa ED. The environmental “riskscape” and social inequality: implications for explaining maternal and child health disparities. Environ Health Perspect. 2006;114:1150–3.

    PubMed  PubMed Central  Google Scholar 

  3. Martin JAHB, Osterman MJK, Driscoll AK, Drake P. Births: final data for 2016. Hyattsville, MD: National Center for Health Statistics; 2018.

  4. Barker DJ. The developmental origins of adult disease. Eur J Epidemiol. 2003;18:733–6.

    CAS  PubMed  Google Scholar 

  5. Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106:905–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-4. Environ Health Perspect. 2011;119:878–85.

    PubMed  PubMed Central  Google Scholar 

  7. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, et al. Biomonitoring in the Era of the Exposome. Environ Health Perspect. 2017;125:502–10.

    CAS  PubMed  Google Scholar 

  8. Centers for Disease Control and Prevention. The fourth national report on human exposure to environmental chemicals. Atlanta, GA: U.S. Centers for Disease Control and Prevention; 2017.

  9. D’Hollander W, de Voogt P, De Coen W, Bervoets L. Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol. 2010;208:179–215.

    PubMed  Google Scholar 

  10. Yu Y, Li C, Zhang X, Zhang X, Pang Y, Zhang S, et al. Route-specific daily uptake of organochlorine pesticides in food, dust, and air by Shanghai residents, China. Environ Int. 2012;50:31–7.

    CAS  PubMed  Google Scholar 

  11. Johnson-Restrepo B, Kannan K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere. 2009;76:542–8.

    CAS  PubMed  Google Scholar 

  12. Blum A, Balan SA, Scheringer M, Trier X, Goldenman G, Cousins IT, et al. The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environ Health Perspect. 2015;123:A107–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kezios KL, Liu X, Cirillo PM, Cohn BA, Kalantzi OI, Wang Y, et al. Dichlorodiphenyltrichloroethane (DDT), DDT metabolites and pregnancy outcomes. Reprod Toxicol. 2013;35:156–64.

    CAS  PubMed  Google Scholar 

  14. Meeker JD, Cantonwine DE, Rivera-Gonzalez LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47:3439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakhi AK, Lillegaard IT, Voorspoels S, Carlsen MH, Loken EB, Brantsaeter AL, et al. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ Int. 2014;73:259–69.

    CAS  PubMed  Google Scholar 

  16. Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect. 2013;121:473–94.

    PubMed  PubMed Central  Google Scholar 

  17. Braun JM, Just AC, Williams PL, Smith KW, Calafat AM, Hauser R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J Expo Sci Environ Epidemiol. 2014;24:459–66.

    CAS  PubMed  Google Scholar 

  18. Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, et al. Reducing Phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect. 2016;124:1600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36:E1–E150.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit. 2005;11:RA329–336.

    CAS  PubMed  Google Scholar 

  21. Sen A, Heredia N, Senut MC, Land S, Hollocher K, Lu X, et al. Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci Rep. 2015;5:14466.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gundacker C, Frohlich S, Graf-Rohrmeister K, Eibenberger B, Jessenig V, Gicic D, et al. Perinatal lead and mercury exposure in Austria. Sci Total Environ. 2010;408:5744–9.

    CAS  PubMed  Google Scholar 

  23. Osman K, Akesson A, Berglund M, Bremme K, Schutz A, Ask K, et al. Toxic and essential elements in placentas of Swedish women. Clin Biochem. 2000;33:131–8.

    CAS  PubMed  Google Scholar 

  24. Tao Y, Bai X, Zhang H, Liu J. [Effect of lead exposure in prenatal and postnatal duration on infant growth]. Wei Sheng Yan Jiu. 2001;30:102–4.

    CAS  PubMed  Google Scholar 

  25. Zhu M, Fitzgerald EF, Gelberg KH, Lin S, Druschel CM. Maternal low-level lead exposure and fetal growth. Environ Health Perspect. 2010;118:1471–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Everson TM, Kappil M, Hao K, Jackson BP, Punshon T, Karagas MR, et al. Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environ Res. 2017;158:233–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Finley C. Mandatory continuing education-a survey of current activity. A special communication. Phys Ther. 1988;68:374–7.

    CAS  PubMed  Google Scholar 

  28. Koslowski L, Schmolke M. [Proceedings: do the history and clinical findings allow any conclusion on the stage of appendicitis? (author’s transl)]. Langenbecks Arch Chir. 1973;334:851–8.

    CAS  PubMed  Google Scholar 

  29. Liao KW, Chang CH, Tsai MS, Chien LC, Chung MY, Mao IF, et al. Associations between urinary total arsenic levels, fetal development, and neonatal birth outcomes: a cohort study in Taiwan. Sci Total Environ. 2018;612:1373–9.

    CAS  PubMed  Google Scholar 

  30. Luo Y, McCullough LE, Tzeng JY, Darrah T, Vengosh A, Maguire RL, et al. Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight. BMC Public Health. 2017;17:354.

    PubMed  PubMed Central  Google Scholar 

  31. Rahman ML, Valeri L, Kile ML, Mazumdar M, Mostofa G, Qamruzzaman Q, et al. Investigating causal relation between prenatal arsenic exposure and birthweight: are smaller infants more susceptible? Environ Int. 2017;108:32–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hackley B, Feinstein A, Dixon J. Air pollution: impact on maternal and perinatal health. J Midwifery Women’s Health. 2007;52:435–43.

    Google Scholar 

  33. Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007;115:1118–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013;121:267–373.

    PubMed  PubMed Central  Google Scholar 

  35. Padula AM, Mortimer KM, Tager IB, Hammond SK, Lurmann FW, Yang W, et al. Traffic-related air pollution and risk of preterm birth in the San Joaquin Valley of California. Ann Epidemiol. 2014;24:888–95. e884.

    PubMed  PubMed Central  Google Scholar 

  36. Sram RJ, Binkova B, Dejmek J, Bobak M. Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect. 2005;113:375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11.

    CAS  PubMed  Google Scholar 

  38. Malinowski AK, Ananth CV, Catalano P, Hines EP, Kirby RS, Klebanoff MA, et al. Research standardization tools: pregnancy measures in the PhenX Toolkit. Am J Obstet Gynecol. 2017;217:249–62.

    PubMed  PubMed Central  Google Scholar 

  39. Schoeters GE, Den Hond E, Koppen G, Smolders R, Bloemen K, De Boever P, et al. Biomonitoring and biomarkers to unravel the risks from prenatal environmental exposures for later health outcomes. Am J Clin Nutr. 2011;94 6 Suppl:1964S–1969S.

    CAS  PubMed  Google Scholar 

  40. Robinson O, Basagana X, Agier L, de Castro M, Hernandez-Ferrer C, Gonzalez JR, et al. The pregnancy exposome: multiple environmental exposures in the INMA-Sabadell Birth Cohort. Environ Sci Technol. 2015;49:10632–41.

    CAS  PubMed  Google Scholar 

  41. Nieuwenhuijsen MJ. Design of exposure questionnaires for epidemiological studies. Occup Environ Med. 2005;62:272–80. 212–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akkus C, Ozdenerol E. Exploring childhood lead exposure through GIS: a review of the recent literature. Int J Environ Res Public Health. 2014;11:6314–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nuckols JR, Ward MH, Jarup L. Using geographic information systems for exposure assessment in environmental epidemiology studies. Environ Health Perspect. 2004;112:1007–15.

    PubMed  PubMed Central  Google Scholar 

  44. Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, et al. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect. 2013;121:387–92.

    PubMed  Google Scholar 

  45. Chiu YH, Hsu HH, Wilson A, Coull BA, Pendo MP, Baccarelli A, et al. Prenatal particulate air pollution exposure and body composition in urban preschool children: Examining sensitive windows and sex-specific associations. Environ Res. 2017;158:798–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee A, Leon Hsu HH, Mathilda Chiu YH, Bose S, Rosa MJ, Kloog I, et al. Prenatal fine particulate exposure and early childhood asthma: effect of maternal stress and fetal sex. J Allergy Clin Immunol. 2018;141:1880–6.

    CAS  PubMed  Google Scholar 

  47. Kloog I, Chudnovsky AA, Just AC, Nordio F, Koutrakis P, Coull BA, et al. A New hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across Northeastern USA using high resolution aerosol optical depth data. Atmos Environ. 2014;95:581–90.

    CAS  Google Scholar 

  48. Hobel CJ, Goldstein A, Barrett ES. Psychosocial stress and pregnancy outcome. Clin Obstet Gynecol. 2008;51:333–48.

    PubMed  Google Scholar 

  49. Blumenshine P, Egerter S, Barclay CJ, Cubbin C, Braveman PA. Socioeconomic disparities in adverse birth outcomes: a systematic review. Am J Prev Med. 2010;39:263–72.

    PubMed  Google Scholar 

  50. Luo ZC, Wilkins R, Kramer MS. Fetal, Infant Health Study Group of the Canadian Perinatal Surveillance S. Effect of neighbourhood income and maternal education on birth outcomes: a population-based study. CMAJ. 2006;174:1415–20.

    PubMed  PubMed Central  Google Scholar 

  51. Pearl M, Braveman P, Abrams B. The relationship of neighborhood socioeconomic characteristics to birthweight among 5 ethnic groups in California. Am J Public Health. 2001;91:1808–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kramer MS, Seguin L, Lydon J, Goulet L. Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr Perinat Epidemiol. 2000;14:194–210.

    CAS  PubMed  Google Scholar 

  53. Adler NE, Stewart J. Health disparities across the lifespan: meaning, methods, and mechanisms. Ann N Y Acad Sci. 2010;1186:5–23.

    PubMed  Google Scholar 

  54. Yali AM, Lobel M. Coping and distress in pregnancy: an investigation of medically high risk women. J Psychosom Obstet Gynaecol. 1999;20:39–52.

    CAS  PubMed  Google Scholar 

  55. Lobel M, Cannella DL, Graham JE, DeVincent C, Schneider J, Meyer BA. Pregnancy-specific stress, prenatal health behaviors, and birth outcomes. Health Psychol. 2008;27:604–15.

    PubMed  Google Scholar 

  56. Roesch SC, Schetter CD, Woo G, Hobel CJ. Modeling the types and timing of stress in pregnancy. Anxiety, Stress Coping. 2004;17:87–102.

    Google Scholar 

  57. Burns ER, Farr SL, Howards PP, Centers for Disease C, Prevention. Stressful life events experienced by women in the year before their infants’ births-United States, 2000–2010. MMWR Morb Mortal Wkly Rep. 2015;64:247–51.

    PubMed  PubMed Central  Google Scholar 

  58. Chen MJ, Grobman WA, Gollan JK, Borders AE. The use of psychosocial stress scales in preterm birth research. Am J Obstet Gynecol. 2011;205:402–34.

    PubMed  PubMed Central  Google Scholar 

  59. Dancause KN, Laplante DP, Oremus C, Fraser S, Brunet A, King S. Disaster-related prenatal maternal stress influences birth outcomes: project Ice Storm. Early Hum Dev. 2011;87:813–20.

    PubMed  Google Scholar 

  60. Schulz LC. The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci USA. 2010;107:16757–8.

    CAS  PubMed  Google Scholar 

  61. Yehuda R, Engel SM, Brand SR, Seckl J, Marcus SM, Berkowitz GS. Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. J Clin Endocrinol Metab. 2005;90:4115–8.

    CAS  PubMed  Google Scholar 

  62. Bussières EL, Tarabulsy GM, Pearson J, Tessier R, Forest JC, Giguère Y. Maternal prenatal stress and infant birth weight and gestational age: a meta-analysis of prospective studies. Dev Rev. 2015;36:179–99.

    Google Scholar 

  63. Gudsnuk KM, Champagne FA. Epigenetic effects of early developmental experiences. Clin Perinatol. 2011;38:703–17.

    PubMed  Google Scholar 

  64. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus Negl. 2003;27:169–90.

    Google Scholar 

  65. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14:245–58.

    CAS  PubMed  Google Scholar 

  66. Schreier HM, Enlow MB, Ritz T, Coull BA, Gennings C, Wright RO, et al. Lifetime exposure to traumatic and other stressful life events and hair cortisol in a multi-racial/ethnic sample of pregnant women. Stress. 2016;19:45–52.

    CAS  Google Scholar 

  67. Krieger N, Smith K, Naishadham D, Hartman C, Barbeau EM. Experiences of discrimination: validity and reliability of a self-report measure for population health research on racism and health. Soc Sci Med. 2005;61:1576–96.

    PubMed  Google Scholar 

  68. Dominguez TP, Strong EF, Krieger N, Gillman MW, Rich-Edwards JW. Differences in the self-reported racism experiences of US-born and foreign-born Black pregnant women. Soc Sci Med. 2009;69:258–65.

    PubMed  PubMed Central  Google Scholar 

  69. Borders AE, Wolfe K, Qadir S, Kim KY, Holl J, Grobman W. Racial/ethnic differences in self-reported and biologic measures of chronic stress in pregnancy. J Perinatol. 2015;35:580–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Geronimus AT, Hicken M, Keene D, Bound J. “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. Am J Public Health. 2006;96:826–33.

    PubMed  PubMed Central  Google Scholar 

  71. Petraglia F, Imperatore A, Challis JR. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev. 2010;31:783–816.

    CAS  PubMed  Google Scholar 

  72. Hobel CJ, Dunkel-Schetter C, Roesch SC, Castro LC, Arora CP. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol. 1999;180 1 Pt 3:S257–63.

    CAS  PubMed  Google Scholar 

  73. Tse AC, Rich-Edwards JW, Koenen K, Wright RJ. Cumulative stress and maternal prenatal corticotropin-releasing hormone in an urban U.S. cohort. Psychoneuroendocrinology. 2012;37:970–9.

    CAS  PubMed  Google Scholar 

  74. Zoumakis E, Kalantaridou SN, Makrigiannakis A. CRH-like peptides in human reproduction. Curr Med Chem. 2009;16:4230–5.

    CAS  PubMed  Google Scholar 

  75. Wadhwa PD, Garite TJ, Porto M, Glynn L, Chicz-DeMet A, Dunkel-Schetter C, et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol. 2004;191:1063–9.

    CAS  PubMed  Google Scholar 

  76. Epel E, Daubenmier J, Moskowitz JT, Folkman S, Blackburn E. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Ann N Y Acad Sci. 2009;1172:34–53.

    PubMed  PubMed Central  Google Scholar 

  77. Parks CG, DeRoo LA, Miller DB, McCanlies EC, Cawthon RM, Sandler DP. Employment and work schedule are related to telomere length in women. Occup Environ Med. 2011;68:582–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101:17312–5.

    CAS  PubMed  Google Scholar 

  79. Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimaki M, et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011;25:1292–8.

    PubMed  Google Scholar 

  80. Tarry-Adkins JL, Chen JH, Smith NS, Jones RH, Cherif H, Ozanne SE. Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J. 2009;23:1521–8.

    CAS  PubMed  Google Scholar 

  81. Tarry-Adkins JL, Martin-Gronert MS, Chen JH, Cripps RL, Ozanne SE. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J. 2008;22:2037–44.

    CAS  PubMed  Google Scholar 

  82. Biron-Shental T, Sukenik Halevy R, Goldberg-Bittman L, Kidron D, Fejgin MD, Amiel A. Telomeres are shorter in placental trophoblasts of pregnancies complicated with intrauterine growth restriction (IUGR). Early Hum Dev. 2010;86:451–6.

    CAS  PubMed  Google Scholar 

  83. Jones CW, Gambala C, Esteves KC, Wallace M, Schlesinger R, O’Quinn M, et al. Differences in placental telomere length suggest a link between racial disparities in birth outcomes and cellular aging. Am J Obstet Gynecol. 2017;216:294 e291–294 e298.

    Google Scholar 

  84. Provenzi L, Scotto di Minico G, Giorda R, Montirosso R. Telomere length in preterm infants: a promising biomarker of early adversity and care in the neonatal intensive care unit? Front Endocrinol. 2017;8:295.

    Google Scholar 

  85. Diez-Roux AV. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health. 1998;88:216–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Macintyre S, Ellaway A, Cummins S. Place effects on health: how can we conceptualise, operationalise and measure them? Soc Sci Med. 2002;55:125–39.

    PubMed  Google Scholar 

  87. Metcalfe A, Lail P, Ghali WA, Sauve RS. The association between neighbourhoods and adverse birth outcomes: a systematic review and meta-analysis of multi-level studies. Paediatr Perinat Epidemiol. 2011;25:236–45.

    PubMed  Google Scholar 

  88. Grady SC. Racial disparities in low birthweight and the contribution of residential segregation: a multilevel analysis. Soc Sci Med. 2006;63:3013–29.

    PubMed  Google Scholar 

  89. Morenoff JD. Neighborhood mechanisms and the spatial dynamics of birth weight. AJS. 2003;108:976–1017.

    PubMed  Google Scholar 

  90. Felker-Kantor E, Wallace M, Theall K. Living in violence: neighborhood domestic violence and small for gestational age births. Health Place. 2017;46:130–6.

    PubMed  PubMed Central  Google Scholar 

  91. Mehra R, Boyd LM, Ickovics JR. Racial residential segregation and adverse birth outcomes: a systematic review and meta-analysis. Soc Sci Med. 2017;191:237–50.

    PubMed  Google Scholar 

  92. Dadvand P, Sunyer J, Basagana X, Ballester F, Lertxundi A, Fernandez-Somoano A, et al. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environ Health Perspect. 2012;120:1481–7.

    PubMed  PubMed Central  Google Scholar 

  93. Dadvand P, Wright J, Martinez D, Basagana X, McEachan RR, Cirach M, et al. Inequality, green spaces, and pregnant women: roles of ethnicity and individual and neighbourhood socioeconomic status. Environ Int. 2014;71:101–8.

    PubMed  Google Scholar 

  94. Ward Thompson C, Aspinall P, Roe J, Robertson L, Miller D. Mitigating stress and supporting health in deprived urban communities: the importance of green space and the social environment. Int J Environ Res Public Health. 2016;13:440.

    PubMed  PubMed Central  Google Scholar 

  95. Miranda ML, Messer LC, Kroeger GL. Associations between the quality of the residential built environment and pregnancy outcomes among women in North Carolina. Environ Health Perspect. 2012;120:471–7.

    PubMed  Google Scholar 

  96. Amegah AK, Damptey OK, Sarpong GA, Duah E, Vervoorn DJ, Jaakkola JJK. Malaria Infection, poor nutrition and indoor air pollution mediate socioeconomic differences in adverse pregnancy outcomes in Cape Coast, Ghana. PLoS ONE. 2013;8:e69181.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Amegah AK, Jaakkola JJ. Work as a street vendor, associated traffic-related air pollution exposures and risk of adverse pregnancy outcomes in Accra, Ghana. Int J Hyg Environ Health. 2014;217:354–62.

    PubMed  Google Scholar 

  98. Amegah AK, Näyhä S, Jaakkola JJK. Do biomass fuel use and consumption of unsafe water mediate educational inequalities in stillbirth risk? An analysis of the 2007 Ghana Maternal Health Survey. BMJ Open. 2017;7:e012348.

    PubMed  PubMed Central  Google Scholar 

  99. Habermann M, Gouveia N. Socioeconomic position and low birth weight among mothers exposed to traffic-related air pollution. PLoS ONE. 2014;9:e113900.

    PubMed  PubMed Central  Google Scholar 

  100. Pereira G, Belanger K, Ebisu K, Bell ML. Fine particulate matter and risk of preterm birth in connecticut in 2000–2006: a longitudinal study. Am J Epidemiol. 2014;179:67–74.

    PubMed  Google Scholar 

  101. Rappazzo KM, Daniels JL, Messer LC, Poole C, Lobdell DT. Exposure to elemental carbon, organic carbon, nitrate, and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000–2005). Environ Health Perspect. 2015;123:1059–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stieb DM, Chen L, Hystad P, Beckerman BS, Jerrett M, Tjepkema M, et al. A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008. Environ Res. 2016;148 Supplement C:513–26.

    CAS  PubMed  Google Scholar 

  103. Tu J, Tu W, Tedders SH. Spatial variations in the associations of term birth weight with ambient air pollution in Georgia, USA. Environ Int. 2016;92 Supplement C:146–56.

    PubMed  Google Scholar 

  104. Morello-Frosch R, Jesdale BM, Sadd JL, Pastor M. Ambient air pollution exposure and full-term birth weight in California. Environ Health. 2010;9:44.

    PubMed  PubMed Central  Google Scholar 

  105. Zeka A, Melly SJ, Schwartz J. The effects of socioeconomic status and indices of physical environment on reduced birth weight and preterm births in Eastern Massachusetts. Environ Health. 2008;7:60.

    PubMed  PubMed Central  Google Scholar 

  106. Généreux M, Auger N, Goneau M, Daniel M. Neighbourhood socioeconomic status, maternal education and adverse birth outcomes among mothers living near highways. J Epidemiol Community Health. 2008;62:695.

    PubMed  Google Scholar 

  107. Chen D, Cho S-I, Chen C, Wang X, Damokosh AI, Ryan L, et al. Exposure to benzene, occupational stress, and reduced birth weight. Occup Environ Med. 2000;57:661–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tomlinson MS, Bommarito PA, Martin EM, Smeester L, Fichorova RN, Onderdonk AB, et al. Microorganisms in the human placenta are associated with altered CpG methylation of immune and inflammation-related genes. PLoS One. 2017;12:e0188664.

    PubMed  PubMed Central  Google Scholar 

  109. Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, et al. The placental microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol. 2016;214:627.e621–627.e616.

    Google Scholar 

  110. Galinsky R, Polglase GR, Hooper SB, Black MJ, Moss TJM. The consequences of chorioamnionitis: preterm birth and effects on development. J Pregnancy. 2013;2013:412831.

    PubMed  PubMed Central  Google Scholar 

  111. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213:S29–S52.

    PubMed  PubMed Central  Google Scholar 

  112. Baptiste-Roberts K, Salafia CM, Nicholson WK, Duggan A, Wang NY, Brancati FL. Maternal risk factors for abnormal placental growth: the national collaborative perinatal project. BMC Pregnancy Childbirth. 2008;8:44.

    PubMed  PubMed Central  Google Scholar 

  113. Ribado JV, Ley C, Haggerty TD, Tkachenko E, Bhatt AS, Parsonnet J. Household triclosan and triclocarban effects on the infant and maternal microbiome. EMBO Mol Med. 2017;9:1732–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vinturache AE, Gyamfi-Bannerman C, Hwang J, Mysorekar IU, Jacobsson B. Maternal microbiome – a pathway to preterm birth. Semin Fetal Neonatal Med. 2016;21:94–9.

    PubMed  Google Scholar 

  115. Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord. 2007;104:91–5.

    CAS  PubMed  Google Scholar 

  116. Haimovici F, Anderson JL, Batesb GW, Racowsky C, Ginsburg ES, Simovicic D, et al. Stress, anxiety and depression of both partners in infertile couples are associated with cytokine levels and adverse IVF outcome. Am J Reprod Immunol. 2018;79:e12832.

    PubMed  Google Scholar 

  117. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36:764–85.

    CAS  PubMed  Google Scholar 

  118. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depression anxiety. 2013;30:297–306.

    CAS  PubMed  Google Scholar 

  119. McNamara RK, Lotrich FE. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev neurotherapeutics. 2012;12:1143–61.

    CAS  Google Scholar 

  120. Maes M, Anderson G, Kubera M, Berk M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin therapeutic targets. 2014;18:495–512.

    CAS  Google Scholar 

  121. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol therapeutics. 2011;130:226–38.

    CAS  Google Scholar 

  122. Ozkan ZS, Deveci D, Kumbak B, Simsek M, Ilhan F, Sekercioglu S, et al. What is the impact of Th1/Th2 ratio, SOCS3, IL17, and IL35 levels in unexplained infertility? J Reprod Immunol. 2014;103:53–8.

    CAS  PubMed  Google Scholar 

  123. Altun T, Jindal S, Greenseid K, Shu J, Pal L. Low follicular fluid IL-6 levels in IVF patients are associated with increased likelihood of clinical pregnancy. J Assist Reprod Genet. 2011;28:245–51.

    PubMed  Google Scholar 

  124. Taylor BD, Holzman CB, Fichorova RN, Tian Y, Jones NM, Fu W, et al. Inflammation biomarkers in vaginal fluid and preterm delivery. Hum Reprod. 2013;28:942–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang H, Wang A, Morello-Frosch R, Lam J, Sirota M, Padula A, et al. Cumulative risk and impact modeling on environmental chemical and social stressors. Curr Environ Health Rep. 2018;5:88–99.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the ECHO program, Office of The Director, NIH, under Award numbers U2COD023375 (Coordinating Center), U24OD023382 (DAC); UG3OD023272 (AMP, TJW, RM-F, and JV); R00ES021470 (AMP), UG3OD023328, UG3OD023316 (CM, SF, and PD), UG3OD023318 (PAB), UG3OD023319 (AB); UG3OD023349, UGOD023271, UGOD023305, P30 ES005022 (ESB); UG3OD023288 (CTM); UG3OD023251 (AA); P42ES017198 (RW); UG30D023349, UG3OD23285 (CS); UG3OD023285 (RF); U24OD023382 (AK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors wish to thank our ECHO colleagues; the medical, nursing, and program staff; as well as the children and families participating in the ECHO cohorts.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Amy M. Padula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Appendix for full listing of collaborators

Appendix

Appendix

The authors wish to thank our ECHO colleagues, the medical, nursing and program staff, as well as the children and families participating in the ECHO cohorts. We also acknowledge the contributions of the following ECHO program collaborators:

ECHO Components

Coordinating Center: Duke Clinical Research Institute, Durham, North Carolina: Benjamin DK, Smith PB, Newby KL

Data Analysis Center: Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland: Jacobson LP; Research Triangle Institute, Durham, North Carolina: Parker CB

Person-Reported Outcomes Core: Northwestern University, Evanston, Illinois: Gershon R, Cella D

Children’s Health and Exposure Analysis Resource: Icahn School of Medicine at Mount Sinai, New York City, New York: Teitelbaum SL; Wright RO; Wadsworth Center, Albany, New York: Aldous, KM, RTI International, Research Triangle Park, North Carolina: Fennell T; University of Minnesota, Minneapolis, Minnesota: Hecht SS, Peterson L; Westat, Inc., Rockville, Maryland: O’Brien B

Idea States Pediatric Trials Network: University of Arkansas for Medical Sciences, Little Rock: Lee JY, Snowden J

ECHO Awardees

Albert Einstein College of Medicine, Bronx, New York: Aschner JL, Teitelbaum SL

Brigham & Women's Hospital, Boston, Massachusetts: Litonjua AA

Columbia University, New York, New York: Perera FP

Dartmouth College, Hanover, New Hampshire: Karagas MR,

Drexel University, Philadelphia, Pennsylvania: Newschaffer CJ

Emory University, Atlanta, Georgia: Dunlop AL, Brennan PA, Corwin EJ

Feinstein Institute for Medical Research, Manhasset, New York: Gregersen PK, Diamond B

Harvard Pilgrim Health Care, Boston, Massachusetts: Oken E, Kleinman KP

Icahn School of Medicine at Mount Sinai, Boston, Massachusetts: Wright RO

Kaiser Permanente, Oakland, California: Ferrara A, Croen LA

Massachusetts General Hospital, Boston: Camargo CA

Medical University of South Carolina, Charleston: Vena JE, Wapner R

Memorial Hospital of Rhode Island, Pawtucket: Deoni S, Mueller HG

Michigan State University, East Lansing, Michigan: Paneth N, Barone C, Copeland GE, Elliott MR, Ruden DM

New York State Psychiatric Institute at Columbia University, New York: Duarte CS, Canino GJ, Monk CE, Posner JE

New York University, New York, New York: Blair CB

New York University School of Medicine, New York, New York: Trasande L

Oregon Health & Science University, Portland, Oregon: McEvoy CT, Spindel ER

Northeastern University, Boston, Massachusetts: Alshawabkeh AN

Avera Research, Sioux Falls, South Dakota: Elliott AJ

University of California, Berkeley: Eskenazi B

University of California, Davis: Hertz-Picciotto I, Bennett DH, Schweitzer JB

University of Chicago, Illinois: Claud EC

University of Colorado Anschutz Medical Campus, Aurora, Colorado: Dabelea D

University of Illinois, Urbana: Schantz SL

University of Oregon, Eugene: Leve LD

University of New Mexico, Albuquerque: Lewis JL, MacKenzie D, Begay M-G

University of North Carolina, Chapel Hill: O’Shea M, Fry R

University of Pittsburgh, Pennsylvania: Hipwell AE, Keenan KE

University of Rochester, New York: O’Connor TG, Buss C, Miller RK, Wadhwa PD

University of Southern California, Los Angeles: Gilliland FD, Breton CV

University of Utah, Salt Lake City: Stanford JB, Clark EB, Porucznik C

University of Washington, Seattle: Karr C, Bush NR, Lewinn KZ

University of Wisconsin, Madison: Gern J

Women & Infants Hospital of Rhode Island, Providence: Lester B

ECHO Cohorts

Brigham & Women's Hospital, Boston, Massachusetts: Gold D; Weiss ST

Children's Hospital of Philadelphia, Pennsylvania: Schultz RT

Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio: Hershey N

Columbia University, New York, New York: Miller R; Herbstman JB

Emory University, Atlanta, Georgia: Marsit CJ

George Washington University, Washington D.C.: Ganiban JM

Henry Ford Health System, Detroit, Michigan: Johnson C, Ownby D, Zoratti E

Icahn School of Medicine at Mount Sinai, New York, New York: Stroustrup A

Inova Health Care System, Falls Church, Virginia: Huddleston K

Johns Hopkins University, Baltimore, Maryland: Volk HE

Kennedy Krieger Institute, Baltimore, Maryland: Landa RJ

Medical University of South Carolina, Charleston: Hunt K

Penn State, University Park, Pennsylvania: Neiderhiser JM

Seattle Children's Research Institute, Washington: Sathyanarayana S

University of Arizona, Tucson, Arizona: Martinez F, Wright A

University of California, San Francisco: Keller R; Woodruff TJ

University of California, Davis: Schmidt RJ, Ozonoff S

University of Chicago, Illinois: Andrews B

University of Miami, Coral Gables, Florida: Messinger DS

University of Michigan, Ann Arbor, Michigan: Padmanabhan V

University of North Carolina, Chapel Hill: Piven J

University of Pittsburgh. Magee-Women's Hospital, Pennsylvania: Simhan HN

University of Rochester, Rochester, New York: Pryhuber G

University of Tennessee Health Science Center: Tylavsky FA

University of Washington, Seattle: Dager SR; Maycock D; Stone WL

University of Wisconsin, Madison: Jackson D, Seroogy C

Vanderbilt University, Nashville, Tennessee: Hartert T; Moore P

Washington University, St. Louis, Missouri: Bacharier L; Botteron KN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padula, A.M., Monk, C., Brennan, P.A. et al. A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors—implications for research on perinatal outcomes in the ECHO program. J Perinatol 40, 10–24 (2020). https://doi.org/10.1038/s41372-019-0510-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-019-0510-y

This article is cited by

Search

Quick links