Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sixty years of phototherapy for neonatal jaundice – from serendipitous observation to standardized treatment and rescue for millions

Abstract

A breakthrough discovery 60 years ago by Cremer et al. has since changed the way we treat infants with hyperbilirubinemia and saved the lives of millions from death and disabilities. “Photobiology” has evolved by inquiry of diverse light sources: fluorescent tubes (wavelength range of 400–520 nm; halogen spotlights that emit circular footprints of light; fiberoptic pads/blankets (mostly, 400–550 nm range) that can be placed in direct contact with skin; and the current narrow-band blue light-emitting diode (LED) light (450–470 nm), which overlaps the peak absorption wavelength (458 nm) for bilirubin photoisomerization. Excessive bombardment with photons has raised concerns for oxidative stress in very low birthweight versus term infants treated aggressively with phototherapy. Increased emphasis on prescribing phototherapy as a “drug” that is dosed cautiously and judiciously is needed. In this historical review, we chronicled the basic to the neurotoxic components of severe neonatal hyperbilirubinemia and the use of standardized interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cremer RJ, Perryman PW, Richards DH, Holbrook B. Photo-sensitivity of serum bilirubin. Biochem J. 1957;66:60P.

    Google Scholar 

  2. Dobbs RH, Cremer RJ. Phototherapy. Arch Dis Child. 1975;50:833–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cremer RJ, Perryman PW, Richards DH. Influence of light on the hyperbilirubinaemia of infants. Lancet. 1958;1:1094–7.

    CAS  PubMed  Google Scholar 

  4. Hansen TW. Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics. 2000;106:E15.

    CAS  PubMed  Google Scholar 

  5. Metlinger B. Ein Regiment der jungen Kinder. Wie Man sy halten und erziechen sol von ihrer Gepurt biß zu jren Tagen komen. Dietikon-Zürich: Augsburg; 1473.

  6. Hansen TW. Nils Rosen von Rosenstein and neonatal jaundice in the 18th century. Acta Paediatr. 2005;94:1834–6.

    PubMed  Google Scholar 

  7. Hansen TW. Neonatal jaundice and scientific fraud in 1804. Acta Paediatr. 2002;91:1135–8.

    CAS  PubMed  Google Scholar 

  8. Hart AP. Familial icterus gravis of the newborn and its treatment. Can Med Assoc J. 1925;15:1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallerstein H. Treatment of severe erythroblastosis by simultaneous removal and replacement of the blood of the newborn infant. Science. 1946;103:583–4.

    PubMed  Google Scholar 

  10. Diamond LK. Erythroblastosis foetalis or haemolytic disease of the newborn. Proc R Soc Med. 1947;40:546–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Perryman PW, Richards DH, Holbrook B. Simultaneous micro-determination of serum bilirubin and of serum “Haem pigments”. Biochem J. 1957;66:61P.

    Google Scholar 

  12. Franklin AW. Influence of light on the hyperbilirubinaemia of infants. Lancet. 1958;1:1227.

    Google Scholar 

  13. Blondheim SH, Zabriskie J, Laphrop D. Kernicterus and prematurity. Brit Med J. 1962;1:52.

    Google Scholar 

  14. Senna JO, Lucey JF. Brazilian contribution to phototherapy. Pediatrics. 1970;46:644–6.

    CAS  PubMed  Google Scholar 

  15. Ferreira HC, Berezin A, Barbieri D, Larrubia MN. [Super-illumination in hyperbilirubinemia in newborn infants]. J Pediatr (Rio J). 1960;25:12–4.

    CAS  Google Scholar 

  16. Ferreira HC, Cardim WH, Mellone O. [Phototherapy. A new therapeutic method in hyperbilirubinemia of the newborn]. J Pediatr (Rio J). 1960;25:347–91.

    CAS  Google Scholar 

  17. Hansen TWR, Bhutani VK. Origins of phototherapy for neonatal jaundice: the Brazilian connection. Educ Contin Saúde Einst. 2012;10:3.9.

    Google Scholar 

  18. Broughton PM, Rossiter EJ, Warren CB, Goulis G, Lord PS. Effect of blue light on hyperbilirubinaemia. Arch Dis Child. 1965;40:666–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ernster L, Zetterstrom R. Bilirubin, an uncoupler of oxidative phosphorylation in isolated mitochondria. Nature. 1956;178:1335–7.

    CAS  PubMed  Google Scholar 

  20. Hansen TW. Biology of bilirubin photoisomers. Clin Perinatol. 2016;43:277–90.

    PubMed  Google Scholar 

  21. Lucey J, Ferriero M, Hewitt J. Prevention of hyperbilirubinemia of prematurity by phototherapy. Pediatrics. 1968;41:1047–54.

    CAS  PubMed  Google Scholar 

  22. Lucey JF. Light on jaundice. N Engl J Med. 1969;280:1075–6.

    CAS  PubMed  Google Scholar 

  23. Bergsma D. Bilirubin metabolism in the newborn; symposium held in Chicago, June 6, 1969. Birth defects original article series. Vol. 6. Williams and Wilkins: Baltimore; 1970.

  24. McDonagh AF, Lightner DA. ‘Like a shrivelled blood orange’– Bilirubin, jaundice, and phototherapy. Pediatrics. 1985;75:443–55.

    CAS  PubMed  Google Scholar 

  25. Lightner DA, Linnane WPd, Ahlfors CE. Bilirubin photooxidation products in the urine of jaundiced neonates receiving phototherapy. Pediatr Res. 1984;18:696–700.

    CAS  PubMed  Google Scholar 

  26. Lightner DA, McDonagh AF. Molecular mechanisms of phototherapy for neonatal jaundice. Acc Chem Res. 1984;17:417–24.

    CAS  Google Scholar 

  27. Mreihil K, McDonagh AF, Nakstad B, Hansen TW. Early isomerization of bilirubin in phototherapy of neonatal jaundice. Pediatr Res. 2010;67:656–9.

    CAS  PubMed  Google Scholar 

  28. Mreihil K, Madsen P, Nakstad B, Benth JS, Ebbesen F, Hansen TW. Early formation of bilirubin isomers during phototherapy for neonatal jaundice: effects of single vs. double fluorescent lamps vs. photodiodes. Pediatr Res. 2015;78:56–62.

    CAS  PubMed  Google Scholar 

  29. Maisels MJ, McDonagh AF. Phototherapy for neonatal jaundice. N Engl J Med. 2008;358:920–8.

    CAS  PubMed  Google Scholar 

  30. Hansen TWR. Phototherapy for neonatal jaundice – therapeutic effects on more than one level? Semin Perinatol. 2010;34:231–4.

    Google Scholar 

  31. De Carvalho M, De Carvalho D, Trzmielina S, Lopes JM, Hansen TW. Intensified phototherapy using daylight fluorescent lamps. Acta Paediatr. 1999;88:768–71.

    PubMed  Google Scholar 

  32. Olusanya BO, Osibanjo FB, Emokpae AA, Slusher TM. Irradiance decay in fluorescent and light-emitting diode-based phototherapy devices: a pilot study. J Trop Pediatr. 2016;62:421–4.

    PubMed  Google Scholar 

  33. Djokomuljanto S, Quah BS, Surini Y, Noraida R, Ismail NZ, Hansen TW, et al. Efficacy of phototherapy for neonatal jaundice is increased by the use of low-cost white reflecting curtains. Arch Dis Child Fetal Neonatal Ed. 2006;91:F439–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mreihil K, Nakstad B, Stensvold HJ, Benth JS, Hansen TWR, Norwegian NPSG, et al. Uniform national guidelines do not prevent wide variations in the clinical application of phototherapy for neonatal jaundice. Acta Paediatr. 2018;107:620–7.

    PubMed  Google Scholar 

  35. American Academy of Pediatrics. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114:297–316.

    Google Scholar 

  36. Obes-Polleri J. La fototerapia en las hiperbilirrubinemias neonatales. Arch Pediatr Urug. 1967;38:77–100.

    Google Scholar 

  37. Brown AK, Kim MH, Wu PY, Bryla DA. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics. 1985;75:393–400.

    CAS  PubMed  Google Scholar 

  38. Donneborg ML, Knudsen KB, Ebbesen F. Effect of infants’ position on serum bilirubin level during conventional phototherapy. Acta Paediatr. 2010;99:1131–4.

    CAS  PubMed  Google Scholar 

  39. Lamola AA, Bhutani VK, Wong RJ, Stevenson DK, McDonagh AF. The effect of hematocrit on the efficacy of phototherapy for neonatal jaundice. Pediatr Res. 2013;74:54–60.

    CAS  PubMed  Google Scholar 

  40. Agati G, Fusi F, Donzelli GP, Pratesi R. Quantum yield and skin filtering effects on the formation rate of lumirubin. J Photochem Photobiol B. 1993;18:197–203.

    CAS  PubMed  Google Scholar 

  41. Ebbesen F, Madsen P, Stovring S, Hundborg H, Agati G. Therapeutic effect of turquoise versus blue light with equal irradiance in preterm infants with jaundice. Acta Paediatr. 2007;96:837–41.

    PubMed  Google Scholar 

  42. Ebbesen F, Vandborg PK, Madsen PH, Trydal T, Jakobsen LH, Vreman HJ. Effect of phototherapy with turquoise vs. blue LED light of equal irradiance in jaundiced neonates. Pediatr Res. 2016;79:308–12.

    PubMed  Google Scholar 

  43. Ebbesen F, Madsen PH, Vandborg PK, Jakobsen LH, Trydal T, Vreman HJ. Bilirubin isomer distribution in jaundiced neonates during phototherapy with LED light centered at 497 nm (turquoise) vs. 459 nm (blue). Pediatr Res. 2016;80:511–5.

    CAS  PubMed  Google Scholar 

  44. Tan KL. The pattern of bilirubin response to phototherapy for neonatal hyperbilirubinaemia. Pediatr Res. 1982;16:670–4.

    CAS  PubMed  Google Scholar 

  45. Vandborg PK, Hansen BM, Greisen G, Ebbesen F. Dose-response relationship of phototherapy for hyperbilirubinemia. Pediatrics. 2012;130:e352–7.

    PubMed  Google Scholar 

  46. Donneborg ML, Vandborg PK, Hansen BM, Rodrigo-Domingo M, Ebbesen F. Double versus single intensive phototherapy with LEDs in treatment of neonatal hyperbilirubinemia. J Perinatol. 2018;38:154–8.

    CAS  PubMed  Google Scholar 

  47. Maisels MJ. Why use homeopathic doses of phototherapy? Pediatrics. 1996;98:283–7.

    CAS  PubMed  Google Scholar 

  48. Hansen TW. Therapeutic approaches to neonatal jaundice: an international survey. Clin Pediatr (Philos). 1996;35:309–16.

    CAS  Google Scholar 

  49. Shinwell ES, Sciaky Y, Karplus M. Effect of position changing on bilirubin levels during phototherapy. J Perinatol. 2002;22:226–9.

    CAS  PubMed  Google Scholar 

  50. Chen CM, Liu SH, Lai CC, Hwang CC, Hsu HH. Changing position does not improve the efficacy of conventional phototherapy. Acta Paediatr Taiwan. 2002;43:255–8.

    PubMed  Google Scholar 

  51. Yamauchi Y, Kasa N, Yamanouchi I. Is it necessary to change the babies’ position during phototherapy? Early Hum Dev. 1989;20:221–7.

    CAS  PubMed  Google Scholar 

  52. Linfield DT, Lamola AA, Mei E, Hwang AY, Vreman HJ, Wong RJ, et al. The effect of hematocrit on in vitro bilirubin photoalteration. Pediatr Res. 2016;79:387–90.

    CAS  PubMed  Google Scholar 

  53. Donneborg ML, Vandborg PK, Hansen BM, Rodrigo-Domingo M, Ebbesen F. The impact of hemoglobin on the efficacy of phototherapy in hyperbilirubinemic infants. Pediatr Res. 2017;82:947–51.

    CAS  PubMed  Google Scholar 

  54. Porto SO, Pildes RS, Goodman H. Studies on the effects of phototherapy on neonatal hyperbilirubinemia among low-birth-weht infants. I. Skin color. J Pediatr. 1969;75:1045–7.

    CAS  PubMed  Google Scholar 

  55. Zachman RD. Alternate phototherapy in neonatal hyperbilirubinemia. J Pediatr. 1972;81:178.

    Google Scholar 

  56. Vogl TP, Hegyi T, Hiatt IM, Polin RA, Indyk L. Intermediate phototherapy in the treatment of jaundice in the premature infant. J Pediatr. 1978;92:627–30.

    CAS  PubMed  Google Scholar 

  57. Lau SP, Fung KP. Serum bilirubin kinetics in intermittent phototherapy of physiological jaundice. Arch Dis Child. 1984;59:892–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sachdeva M, Murki S, Oleti TP, Kandraju H. Intermittent versus continuous phototherapy for the treatment of neonatal non-hemolytic moderate hyperbilirubinemia in infants more than 34 weeks of gestational age: a randomized controlled trial. Eur J Pediatr. 2015;174:177–81.

    CAS  PubMed  Google Scholar 

  59. Maisels MJ. Bilirubin; on understanding and influencing its metabolism in the newborn infant. Pediatr Clin North Am. 1972;19:447–501.

    CAS  PubMed  Google Scholar 

  60. Akre B. [Treatment of hyperbilirubinemia in the neonatal period]. Tidsskr Nor Laege. 1974;94:716–9.

    CAS  Google Scholar 

  61. Finlay HVL, Tucker SM. Neonatal plasma bilirubin chart [letter]. Arch Dis Child. 1978;53:90–1.

    PubMed Central  Google Scholar 

  62. American Academy of Pediatrics. Practice parameter: management of hyperbilirubinemia in the healthy term newborn. Provisional Committee for Quality Improvement and Subcommittee on Hyperbilirubinemia. Pediatrics. 1994;94:558–65.

    Google Scholar 

  63. Maisels MJ, Bhutani VK, Bogen D, Newman TB, Stark AR, Watchko JF. Hyperbilirubinemia in the newborn infant > or =35 weeks’ gestation: an update with clarifications. Pediatrics. 2009;124:1193–8.

    PubMed  Google Scholar 

  64. Rennie J, Burman-Roy S, Murphy MS. Neonatal jaundice: summary of NICE guidance. BMJ. 2010;340:c2409. Guideline Development Group.

    PubMed  Google Scholar 

  65. Bratlid D, Nakstad B, Hansen TW. National guidelines for treatment of jaundice in the newborn. Acta Paediatr. 2011;100:499–505.

    CAS  PubMed  Google Scholar 

  66. World Health Organization. WHO recommendations on newborn health. 2017. http://www.who.int/maternal_child_adolescent/documents/newborn-health-recommendations/en/.

  67. Brown AK. Neonatal hyperbilirubinemia. In: Behrman RM, editor. Neonatology: Diseases of the Fetus and Infant. St. Louis: Mosby; 1973.

  68. Gartner LM, Herrarias CT, Sebring RH. Practice patterns in neonatal hyperbilirubinemia. Pediatrics. 1998;101:25–31.

    CAS  PubMed  Google Scholar 

  69. Mreihil K, Benth JS, Stensvold HJ, Nakstad B, Hansen TWR, Norwegian NPSG, et al. Phototherapy is commonly used for neonatal jaundice but greater control is needed to avoid toxicity in the most vulnerable infants. Acta Paediatr. 2018;107:611–9.

    PubMed  Google Scholar 

  70. Mukherjee D, Coffey MP, Maisels MJ. How many babies in the NICU receive phototherapy and for how long? Acta Paediatr. 2017;106:19–20.

    Google Scholar 

  71. Atkinson LR, Escobar GJ, Takayama JI, Newman TB. Phototherapy use in jaundiced newborns in a large managed care organization: do clinicians adhere to the guideline? Pediatrics. 2003;111:e555–61.

    PubMed  Google Scholar 

  72. Kuzniewicz MW, Escobar GJ, Newman TB. Impact of universal bilirubin screening on severe hyperbilirubinemia and phototherapy use. Pediatrics. 2009;124:1031–9.

    PubMed  Google Scholar 

  73. Bhutani VK, Stark AR, Lazzeroni LC, Poland R, Gourley GR, Kazmierczak S, et al. Predischarge screening for severe neonatal hyperbilirubinemia identifies infants who need phototherapy. J Pediatr. 2013;162:477–82 e471.

    PubMed  Google Scholar 

  74. Tølløfsrud PA, Bjørhus E, Vårdal MH. Bilirubin levels and need for phototherapy during the first 4 postnatal days in healthy Norwegian neonates >36 weeks of gestation. Boston, MA: Pediatric Academic Societies; 2012.

  75. Phillips RM, Goldstein M, Hougland K, Nandyal R, Pizzica A, Santa-Donato A, et al. Multidisciplinary guidelines for the care of late preterm infants. J Perinatol. 2013;33(Suppl 2):S5–22.

    PubMed  PubMed Central  Google Scholar 

  76. Keren R, Luan X, Friedman S, Saddlemire S, Cnaan A, Bhutani VK. A comparison of alternative risk-assessment strategies for predicting significant neonatal hyperbilirubinemia in term and near-term infants. Pediatrics. 2008;121:e170–9.

    PubMed  Google Scholar 

  77. Mah MP, Clark SL, Akhigbe E, Englebright J, Frye DK, Meyers JA, et al. Reduction of severe hyperbilirubinemia after institution of predischarge bilirubin screening. Pediatrics. 2010;125:e1143–8.

    PubMed  Google Scholar 

  78. Bhutani VK. Multidisciplinary guidelines for the care of late preterm infants. J Perinatol. 2014;34:81.

    CAS  PubMed  Google Scholar 

  79. Olusanya BO, Emokpae AA. Use of transcutaneous bilirubin to determine the need for phototherapy in resource-limited settings. Neonatology. 2017;111:324–30.

    CAS  PubMed  Google Scholar 

  80. Hansen TW, Nietsch L, Norman E, Bjerre JV, Hascoet JM, Mreihil K, et al. Reversibility of acute intermediate phase bilirubin encephalopathy. Acta Paediatr. 2009;98:1689–94.

    PubMed  Google Scholar 

  81. Harris MC, Bernbaum JC, Polin JR, Zimmerman R, Polin RA. Developmental follow-up of breastfed term and near-term infants with marked hyperbilirubinemia. Pediatrics. 2001;107:1075–80.

    CAS  PubMed  Google Scholar 

  82. Johnson L, Bhutani VK, Karp K, Sivieri EM, Shapiro SM. Clinical report from the pilot USA Kernicterus Registry (1992 to 2004). J Perinatol. 2009;29(Suppl 1):S25–45.

    PubMed  Google Scholar 

  83. Morris BH, Oh W, Tyson JE, Stevenson DK, Phelps DL, O’Shea TM, et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N Engl J Med. 2008;359:1885–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lamola AA. A pharmacologic view of phototherapy. Clin Perinatol. 2016;43:259–76.

    PubMed  Google Scholar 

  85. Peluffo E, Beltran JC, Malinger A, Giguens W, Vila Vidal P, Lorenzo YDIJ, et al. [Light therapy in jaundices in the newborn]. Arch Pediatr Urug. 1962;33:98–105.

    CAS  PubMed  Google Scholar 

  86. Okwundu CI, Okoromah CA, Shah PS. Prophylactic phototherapy for preventing jaundice in preterm or low birth weight infants. Cochrane Database Syst Rev. 2012;1:CD007966.

    PubMed  Google Scholar 

  87. Davies MW. Commentary on ‘Prophylactic phototherapy for preventing jaundice in preterm or low birth weight infants’. Evid Based Child Health. 2013;8:250–1.

    PubMed  Google Scholar 

  88. Tyson JE, Pedroza C, Langer J, Green C, Morris B, Stevenson D, et al. Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J Perinatol. 2012;32:677–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hansen TW. Let there be light-but should there be less? J Perinatol. 2012;32:649–51.

    CAS  PubMed  Google Scholar 

  90. Owa JA, Adebami OJ, Fadero FF, Slusher TM. Irradiance readings of phototherapy equipment: Nigeria. Indian J Pediatr. 2011;78:996–8.

    PubMed  Google Scholar 

  91. Pejaver RK, Vishwanath J. An audit of phototherapy units. Indian J Pediatr. 2000;67:883–4.

    CAS  PubMed  Google Scholar 

  92. van Imhoff DE, Hulzebos CV, van der Heide M, van den Belt VW, Vreman HJ, Dijk PH, et al. High variability and low irradiance of phototherapy devices in Dutch NICUs. Arch Dis Child Fetal Neonatal Ed. 2013;98:F112–6.

    PubMed  Google Scholar 

  93. Dani C, Poggi C, Barp J, Romagnoli C, Buonocore G. Current Italian practices regarding the management of hyperbilirubinaemia in preterm infants. Acta Paediatr. 2011;100:666–9.

    PubMed  Google Scholar 

  94. Bhutani VK. Committee on Fetus and Newborn American Academy of Pediatrics. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2011;128:e1046–52.

    PubMed  Google Scholar 

  95. Abramov I, Hainline L, Lemerise E, Brown AK. Changes in visual functions of children exposed as infants to prolonged illumination. J Am Optom Assoc. 1985;56:614–9.

    CAS  PubMed  Google Scholar 

  96. Dobson V. Editorial: phototherapy and retinal damage. Invest Ophthalmol. 1976;15:595–8.

    CAS  PubMed  Google Scholar 

  97. Dollberg S, Atherton HD, Hoath SB. Effect of different phototherapy lights on incubator characteristics and dynamics under three modes of servocontrol. Am J Perinatol. 1995;12:55–60.

    CAS  PubMed  Google Scholar 

  98. Messner KH, Maisels MJ, Leure-DuPree AE. Phototoxicity to the newborn primate retina. Invest Ophthalmol Vis Sci. 1978;17:178–82.

    CAS  PubMed  Google Scholar 

  99. Oh W, Karecki H. Phototherapy and insensible water loss in the newborn infant. Am J Dis Child. 1972;124:230–2.

    CAS  PubMed  Google Scholar 

  100. Kopelman AE, Brown RS, Odell GB. The “bronze” baby syndrome: a complication of phototherapy. J Pediatr. 1972;81:466–72.

    CAS  PubMed  Google Scholar 

  101. Mallon E, Wojnarowska F, Hope P, Elder G. Neonatal bullous eruption as a result of transient porphyrinemia in a premature infant with hemolytic disease of the newborn. J Am Acad Dermatol. 1995;33:333–6.

    CAS  PubMed  Google Scholar 

  102. Aydemir O, Soysaldi E, Kale Y, Kavurt S, Bas AY, Demirel N. Body temperature changes of newborns under fluorescent versus LED phototherapy. Indian J Pediatr. 2014;81:751–4.

    PubMed  Google Scholar 

  103. Jahnukainen T, Lindqvist A, Jalonen J, Kero P, Valimaki I. Responsiveness of cutaneous vasculature to thermal stimulation during phototherapy in neonatal jaundice. Eur J Pediatr. 1999;158:757–60.

    CAS  PubMed  Google Scholar 

  104. Rosenfeld W, Sadhev S, Brunot V, Jhaveri R, Zabaleta I, Evans HE. Phototherapy effect on the incidence of patent ductus arteriosus in premature infants: Prevention with chest shielding. Pediatrics. 1986;78:10–14.

    CAS  PubMed  Google Scholar 

  105. Yao AC, Martinussen M, Johansen OJ, Brubakk AM. Phototherapy-associated changes in mesenteric blood flow response to feeding in term neonates. J Pediatr. 1994;124:309–12.

    CAS  PubMed  Google Scholar 

  106. Kjartansson S, Hammarlund K, Sedin G. Insensible water loss from the skin during phototherapy in term and preterm infants. Acta Paediatr. 1992;81:764–8.

    CAS  PubMed  Google Scholar 

  107. Lai NM, Ahmad Kamar A, Choo YM, Kong JY, Ngim CF. Fluid supplementation for neonatal unconjugated hyperbilirubinaemia. Cochrane Database Syst Rev. 2017;8:CD011891.

    PubMed  Google Scholar 

  108. Tonz O, Vogt J, Filippini L, Simmler F, Wachsmuth ED, Winterhalter KH. [Severe light dermatosis following photo therapy in a newborn infant with congenital erythropoietic urophyria]. Helv Paediatr Acta. 1975;30:47–56.

    CAS  PubMed  Google Scholar 

  109. Bauer J, Buttner P, Luther H, Wiecker TS, Mohrle M, Garbe C. Blue light phototherapy of neonatal jaundice does not increase the risk for melanocytic nevus development. Arch Dermatol. 2004;140:493–4.

    PubMed  Google Scholar 

  110. Csoma Z, Hencz P, Orvos H, Kemeny L, Dobozy A, Dosa-Racz E, et al. Neonatal blue-light phototherapy could increase the risk of dysplastic nevus development. Pediatrics. 2007;119:1269.

    PubMed  Google Scholar 

  111. Schulz S, Wong RJ, Vreman HJ, Stevenson DK. Metalloporphyrins – An update. Front Pharm. 2012;3:68.

    Google Scholar 

  112. Stevenson DK, Rodgers PA, Vreman HJ. The use of metalloporphyrins for the chemoprevention of neonatal jaundice. Am J Dis Child. 1989;143:353–6.

    CAS  PubMed  Google Scholar 

  113. Vreman HJ, Wong RJ, Stevenson DK. Alternative metalloporphyrins for the treatment of neonatal jaundice. J Perinatol. 2001;21(Suppl 1):S108–13.

    PubMed  Google Scholar 

  114. Wong RJ, Bhutani VK, Vreman HJ, Stevenson DK. Tin mesoporphyrin for the prevention of severe neonatal hyperbilirubinemia. NeoReviews. 2007;8:e77–84.

    Google Scholar 

  115. Dunn PM. Dr Alfred Hart (1888–1954) of Toronto and exsanguination transfusion of the newborn. Arch Dis Child. 1993;69:95–6.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Bhutani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, T.W.R., Maisels, M.J., Ebbesen, F. et al. Sixty years of phototherapy for neonatal jaundice – from serendipitous observation to standardized treatment and rescue for millions. J Perinatol 40, 180–193 (2020). https://doi.org/10.1038/s41372-019-0439-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-019-0439-1

This article is cited by

Search

Quick links