Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trends in reticulocyte hemoglobin equivalent values in critically ill neonates, stratified by gestational age

Abstract

Objective

The reticulocyte index reticulocyte hemoglobin equivalent (Ret-He) was evaluated as a marker of iron status.

Study design

This is a retrospective cohort study of all infants admitted to the University of Washington Neonatal Intensive Care Unit, who received Ret-He measurements as part of routine care within the first 120 days of life.

Result

A total of 730 Ret-He measurements from 249 infants were analyzed (median gestational age at birth 32.1 weeks; 49 infants <28 weeks and 200 ≥28 weeks). Initial Ret-He measurements were lower in infants <28 weeks (28.24 vs. 33.34 pg). Ret-He values initially decreased, then slowly increased. Infants received an average of 3.9, 6.5, and 8.2 mg/kg/day of enteral iron sulfate at 30, 60, and 90 days, respectively.

Conclusion

Ret-He values showed a slow uptrend with enteral iron supplementation following an initial decrease, suggesting that neonates are able to improve their iron sufficiency status with supplementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105:E51.

    Article  CAS  Google Scholar 

  2. Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006;160:1108–13.

    Article  Google Scholar 

  3. McCann J, Ames BN. An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am J Clin Nutr. 2007;85:931–45.

    Article  CAS  Google Scholar 

  4. Georgieff MK. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106:1588S–93S.

    Article  Google Scholar 

  5. Riggins T, Miller NC, Bauer PJ, Georgieff MK, Nelson CA. Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Dev Neuropsychol. 2009;34:762–79.

    Article  Google Scholar 

  6. Brunette KE, Tran PV, Wobken JD, Carlson ES, Georgieff MK. Gestational and neonatal iron deficiency alters apical dendrite structure of CA1 pyramidal neurons in adult rat hippocampus. Dev Neurosci. 2010;32:238–48.

    Article  CAS  Google Scholar 

  7. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–58.

    Article  CAS  Google Scholar 

  8. Fretham SJ, Carlson ES, Georgieff MK. The role of iron in learning and memory. Adv Nutr. 2011;2:112–21.

    Article  CAS  Google Scholar 

  9. Radlowski E, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neuroscience. 2013;7:585.

    Article  Google Scholar 

  10. German K, Vu PT, Grelli KN, Denton C, Lee G, Juul SE. Zinc protoporphyrin-to-heme ratio and ferritin as measures of iron sufficiency in the neonatal intensive care unit. J Pediatr. 2018;194:47–53.

    Article  CAS  Google Scholar 

  11. Brown MS. Effect of transfusion and phlebotomy on serum ferritin levels in low birth weight infants. J Perinatol. 1996;16:39–42.

    CAS  PubMed  Google Scholar 

  12. Christensen R, Yaish H, Henry E, Bennett S. Red blood cell distribution width: reference intervals for neonates. J Matern-Fetal Neonatal Med. 2015;28:883–8.

    Article  Google Scholar 

  13. Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of Nutrition for Development (BOND)- iron review. J Nutr. 2018;148:1001S–67S.

    Article  Google Scholar 

  14. Zamora T, Guiang SF 3rd, Widness JA, Georgieff MK. Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res. 2016;79:922–8.

    Article  CAS  Google Scholar 

  15. Ennis K, Dahl L, Rao R, Georgieff M. Reticulocyte hemoglobin content as an early predictive biomarker of brain iron deficiency. Pediatr Res. 2018;84:765–9.

    Article  Google Scholar 

  16. Georgieff MK, Brunette KE, Tran PV. Early life nutrition and neural plasticity. Dev Psychopathol. 2015;27:411–23.

    Article  Google Scholar 

  17. Tran P, Fretham SJ, Carlson ES, Georgieff MK. Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats. Pediatr Res. 2009;65:493–8.

    Article  CAS  Google Scholar 

  18. Fretham SJ, Carlson ES, Wobken J, Tran PV, Petryk A, Georgieff MK. Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus. 2012;22:1691–702.

    Article  CAS  Google Scholar 

  19. Buttarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Hematol. 2016;38:123–32.

    Article  Google Scholar 

  20. Mäkelä E, Takala TI, Suominen P, Matomäki J, Salmi TT, Rajamäki A, et al. Hematological parameters in preterm infants from birth to 16 weeks of age with reference to iron balance. Clin Chem Lab Med. 2008;46:551–7.

    Article  Google Scholar 

  21. Baker RD, Greer FR, The Committee on Nutrition. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126:1040–50.

    Article  Google Scholar 

  22. Canals C, Remacha AF, Sardá MP, Piazuelo JM, Royo MT, Romero MA. Clinical utility of the new Sysmex XE 2100 parameter—reticulocyte hemoglobin equivalent—in the diagnosis of anemia. Haematologica. 2005;90:1133–4.

    PubMed  Google Scholar 

  23. Marković M, Majkić-Singh N, Ignjatović S, Singh S. Reticulocyte haemoglobin content vs. soluble transferrin receptor and ferritin index in iron deficiency anaemia accompanied with inflammation. Int J Lab Hematol. 2007;29:341–6.

    Article  Google Scholar 

  24. Mast A, Blinder MA, Dietzen DJ. Reticulocyte hemoglobin content. Am J Hematol. 2008;83:307–10.

    Article  CAS  Google Scholar 

  25. Urrechaga E, Borque L, Escanero JF. Analysis of reticulocyte parameters on the Sysmex XE 5000 and LH 750 analyzers in the diagnosis of inefficient erythropoiesis. Int J Hematol. 2011;33:37–44.

    Article  CAS  Google Scholar 

  26. Toki K, Ikuta K, Kawahara Y, Niizeki N, Kon M, Enomoto M, et al. Reticulocyte hemoglobin equivalent as a potential marker for diagnosis of iron deficiency. Int J Hematol. 2017;106:116–25.

    Article  CAS  Google Scholar 

  27. Brugnara C, Schiller B, Moran J. Reticulocyte hemoglobin equivalent (Ret He) and assessment of iron-deficient states. Clin Lab Haematol. 2006;28:303–8.

    Article  CAS  Google Scholar 

  28. Thomas L, Franck S, Messinger M, Linssen J, Thomé M, Thomas C. Reticulocyte hemoglobin measurement–comparison of two methods in the diagnosis of iron-restricted erythropoiesis. Clin Chem Lab Med. 2005;43:1193–202.

    Article  CAS  Google Scholar 

  29. Christensen RD, Henry E, Bennett ST, Yaish HM. Reference intervals for reticulocyte parameters of infants during their first 90 days after birth. J Perinatol. 2016;36:61–6.

    Article  CAS  Google Scholar 

  30. Lorenz LPA, Arand J, Springer F, Poets CF, Franz AR. Reference ranges of reticulocyte haemoglobin content in preterm and term infants: a retrospective analysis. Neonatology. 2017;111:189–94.

    Article  CAS  Google Scholar 

  31. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38:963–74.

    Article  CAS  Google Scholar 

  32. R-Core-Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2018.

  33. Harris PA, Taylor A, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

    Article  Google Scholar 

  34. Lorenz L, Peter A, Arand J, Springer F, Poets CF, Franz AR. Reticulocyte haemoglobin content declines more markedly in preterm than in term infants in the first days after birth. Neonatology. 2017;112:246–50.

    Article  CAS  Google Scholar 

  35. Al-Ghananim RT, Nalbant D, Schmidt RL, Cress GA, Zimmerman MB, Widness JA. Reticulocyte hemoglobin content during the first month of life in critically ill very low birth weight neonates differs from term infants, children, and adults. J Clin Lab Anal. 2016;30:326–34.

    Article  CAS  Google Scholar 

  36. Davidkova S PTD, Reed PW, Kara T, Wong W, Prestidge C. Comparison of reticulocyte hemoglobin equivalent with traditional markers of iron and erythropoiesis in pediatric dialysis. Pediatr Nephrol. 2016;31:819–26.

    Article  Google Scholar 

  37. Dani C, Poggi C, Gozzini E, Leonardi V, Sereni A, Abbate R, et al. Red blood cell transfusions can induce proinflammatory cytokines in preterm infants. Transfusion. 2017;57:1304–10.

    Article  CAS  Google Scholar 

  38. Kakimoto-Shino M, Toya Y, Kuji T, Fujikawa T, Umemura S. Changes in hepcidin and reticulocyte hemoglobin equivalent levels in response to continuous erythropoietin receptor activator administration in hemodialysis patients: a randomized study. Ther Apher Dial. 2014;18:421–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Daniel Sabath, MD, PhD, Gina Park and the University of Washington, Department of Laboratory Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendell German.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, K., Vu, P.T., Irvine, J.D. et al. Trends in reticulocyte hemoglobin equivalent values in critically ill neonates, stratified by gestational age. J Perinatol 39, 1268–1274 (2019). https://doi.org/10.1038/s41372-019-0434-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-019-0434-6

This article is cited by

Search

Quick links