Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relationship between vitamin D status and the vaginal microbiome during pregnancy

Abstract

Objective

Evidence supports an inverse association between vitamin D and bacterial vaginosis (BV) during pregnancy. Furthermore, both the vaginal microbiome and vitamin D status correlate with pregnancy outcome. Women of African ancestry are more likely to experience BV, to be vitamin D deficient, and to have certain pregnancy complications. We investigated the association between vitamin D status and the vaginal microbiome.

Study design

Subjects were assigned to a treatment (4400 IU) or a control group (400 IU vitamin D daily), sampled three times during pregnancy, and vaginal 16S rRNA gene taxonomic profiles and plasma 25-hydroxyvitamin D [25(OH)D] concentrations were examined.

Result

Gestational age and ethnicity were significantly associated with the microbiome. Megasphaera correlated negatively (p = 0.0187) with 25(OH)D among women of African ancestry. Among controls, women of European ancestry exhibited a positive correlation between plasma 25(OH)D and L. crispatus abundance.

Conclusion

Certain vaginal bacteria are associated with plasma 25(OH)D concentration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Tabatabaei N, Eren AM, Barreiro LB, Yotova V, Dumaine A, Allard C et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG. 2018. https://doi.org/10.1111/1471-0528.15299.

    Article  Google Scholar 

  2. 2.

    Callahan BJ, DiGiulio DB, Goltsman DSA, Sun CL, Costello EK, Jeganathan P, et al. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc Natl Acad Sci USA. 2017;114:9966–71.

    CAS  Article  Google Scholar 

  3. 3.

    Amegah AK, Klevor MK, Wagner CL. Maternal vitamin D insufficiency and risk of adverse pregnancy and birth outcomes: a systematic review and meta-analysis of longitudinal studies. PLoS ONE. 2017;12:e0173605.

    Article  Google Scholar 

  4. 4.

    Tabatabaei N, Auger N, Herba CM, Wei S, Allard C, Fink GD, et al. Maternal vitamin D insufficiency early in pregnancy is associated with increased risk of preterm birth in ethnic minority women in Canada. J Nutr. 2017;147:1145–51.

    CAS  Article  Google Scholar 

  5. 5.

    Zhao X, Fang R, Yu R, Chen D, Zhao J, Xiao J. Maternal vitamin D status in the late second trimester and the risk of severe preeclampsia in southeastern China. Nutrients. 2017;9. https://doi.org/10.3390/nu9020138.

    Article  Google Scholar 

  6. 6.

    Wen J, Hong Q, Zhu L, Xu P, Fu Z, Cui X, et al. Association of maternal serum 25-hydroxyvitamin D concentrations in second and third trimester with risk of gestational diabetes and other pregnancy outcomes. Int J Obes (Lond). 2017;41:489–96.

    CAS  Article  Google Scholar 

  7. 7.

    Toko EN, Sumba OP, Daud II, Ogolla S, Majiwa M, Krisher JT et al. Maternal vitamin D status and adverse birth outcomes in children from rural Western Kenya. Nutrients. 2016;8. https://doi.org/10.3390/nu8120794.

    Article  Google Scholar 

  8. 8.

    Kiely ME, Zhang JY, Kinsella M, Khashan AS, Kenny LC. Vitamin D status is associated with uteroplacental dysfunction indicated by pre-eclampsia and small-for-gestational-age birth in a large prospective pregnancy cohort in Ireland with low vitamin D status. Am J Clin Nutr. 2016;104:354–61.

    CAS  Article  Google Scholar 

  9. 9.

    Miliku K, Vinkhuyzen A, Blanken LM, McGrath JJ, Eyles DW, Burne TH, et al. Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. Am J Clin Nutr. 2016;103:1514–22.

    CAS  Article  Google Scholar 

  10. 10.

    Wagner CL, Hollis BW, Kotsa K, Fakhoury H, Karras SN. Vitamin D administration during pregnancy as prevention for pregnancy, neonatal and postnatal complications. Rev Endocr Metab Disord. 2017;18:307–22.

    CAS  Article  Google Scholar 

  11. 11.

    Weinert LS, Silveiro SP. Maternal-fetal impact of vitamin D deficiency: a critical review. Matern Child Health J. 2015;19:94–101.

    Article  Google Scholar 

  12. 12.

    Tamblyn JA, Hewison M, Wagner CL, Bulmer JN, Kilby MD. Immunological role of vitamin D at the maternal-fetal interface. J Endocrinol. 2015;224:R107–121.

    CAS  Article  Google Scholar 

  13. 13.

    Bodnar LM, Krohn MA, Simhan HN. Maternal vitamin D deficiency is associated with bacterial vaginosis in the first trimester of pregnancy. J Nutr. 2009;139:1157–61.

    CAS  Article  Google Scholar 

  14. 14.

    Dunlop AL, Taylor RN, Tangpricha V, Fortunato S, Menon R. Maternal vitamin D, folate, and polyunsaturated fatty acid status and bacterial vaginosis during pregnancy. Infect Dis Obstet Gynecol. 2011;2011:216217.

    Article  Google Scholar 

  15. 15.

    Hensel KJ, Randis TM, Gelber SE, Ratner AJ. Pregnancy-specific association of vitamin D deficiency and bacterial vaginosis. Am J Obstet Gynecol. 2011;204:41.e1–9.

    Article  Google Scholar 

  16. 16.

    Turner AN, Carr Reese P, Fields KS, Anderson J, Ervin M, Davis JA, et al. A blinded, randomized controlled trial of high-dose vitamin D supplementation to reduce recurrence of bacterial vaginosis. Am J Obstet Gynecol. 2014;211:479.e1–479.e13.

    CAS  Article  Google Scholar 

  17. 17.

    Taheri M, Baheiraei A, Foroushani AR, Nikmanesh B, Modarres M. Treatment of vitamin D deficiency is an effective method in the elimination of asymptomatic bacterial vaginosis: a placebo-controlled randomized clinical trial. Indian J Med Res. 2015;141:799–806.

    Article  Google Scholar 

  18. 18.

    O’Callaghan KM, Kiely ME. Ethnic disparities in the dietary requirement for vitamin D during pregnancy: considerations for nutrition policy and research. Proc Nutr Soc. 2018;77:164–73.

    Article  Google Scholar 

  19. 19.

    Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiol Read Engl. 2014;160:2272–82.

    CAS  Article  Google Scholar 

  20. 20.

    Oliver EA, Klebanoff M, Yossef-Salameh L, Oza-Frank R, Moosavinasab S, Reagan P, et al. Preterm birth and gestational length in four race-nativity groups, including Somali Americans. Obstet Gynecol. 2018;131:281–9.

    Article  Google Scholar 

  21. 21.

    Hamilton BE, Martin JA, Osterman MJK, Curtin SC, Matthews TJ. Births: Final Data for 2014. Natl Vital Stat Rep. 2015;64:1–64.

    PubMed  Google Scholar 

  22. 22.

    Seto TL, Tabangin ME, Langdon G, Mangeot C, Dawodu A, Steinhoff M, et al. Racial disparities in cord blood vitamin D levels and its association with small-for-gestational-age infants. J Perinatol. 2016;36:623–8.

    CAS  Article  Google Scholar 

  23. 23.

    Wagner CL, Baggerly C, McDonnell S, Baggerly KA, French CB, Baggerly L, et al. Post-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009–11 rates. J Steroid Biochem Mol Biol. 2016;155:245–51.

    CAS  Article  Google Scholar 

  24. 24.

    Abercrombie M, Shary J, Ebeling M, Hollis B, Wagner C. Analysis of the NICHD vitamin D pregnancy cohort on a per-protocol vs. intent-to-treat basis: the effect of adherence on trial results. J Nutr Food Sci. 2018;8:696.

    Article  Google Scholar 

  25. 25.

    Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hollis BW, Wagner CL. Vitamin D supplementation during pregnancy: improvements in birth outcomes and complications through direct genomic alteration. Mol Cell Endocrinol. 2017;453:113–30.

    CAS  Article  Google Scholar 

  27. 27.

    ACOG Committee on Practice Bulletins--Gynecology. ACOG Practice Bulletin. Clinical management guidelines for obstetrician-gynecologists, Number 72, May 2006: Vaginitis. Obstet Gynecol. 2006;107:1195–206.

    Article  Google Scholar 

  28. 28.

    Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16 S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2:6.

    Article  Google Scholar 

  29. 29.

    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.

    CAS  Article  Google Scholar 

  30. 30.

    Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD. Generation of multimillion-sequence 16 S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol. 2011;77:3846–52.

    CAS  Article  Google Scholar 

  31. 31.

    Parikh HI, Koparde VN, Bradley SP, Buck GA, Sheth NU. MeFiT: merging and filtering tool for illumina paired-end reads for 16 S rRNA amplicon sequencing. BMC Bioinformatics. 2016;17:491.

    Article  Google Scholar 

  32. 32.

    Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, et al. Species-level classification of the vaginal microbiome. BMC Genomics. 2012;13(Suppl 8):S17.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS  Article  Google Scholar 

  34. 34.

    Brooks JP, Buck GA, Chen G, Diao L, Edwards DJ, Fettweis JM, et al. Changes in vaginal community state types reflect major shifts in the microbiome. Microb Ecol Health Dis. 2017;28:1303265.

    Article  Google Scholar 

  35. 35.

    Gniadecki R, Gajkowska B, Hansen M. 1,25-dihydroxyvitamin D3 stimulates the assembly of adherens junctions in keratinocytes: involvement of protein kinase C. Endocrinology. 1997;138:2241–8.

    CAS  Article  Google Scholar 

  36. 36.

    Lee A, Lee MR, Lee H-H, Kim Y-S, Kim J-M, Enkhbold T, et al. Vitamin D proliferates vaginal epithelium through RhoA expression in postmenopausal atrophic vagina tissue. Mol Cells. 2017;40:677–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rad P, Tadayon M, Abbaspour M, Latifi SM, Rashidi I, Delaviz H. The effect of vitamin D on vaginal atrophy in postmenopausal women. Iran J Nurs Midwifery Res. 2015;20:211–5.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yildirim B, Kaleli B, Düzcan E, Topuz O. The effects of postmenopausal Vitamin D treatment on vaginal atrophy. Maturitas. 2004;49:334–7.

    CAS  Article  Google Scholar 

  39. 39.

    Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci. 2007;64:1930–44.

    CAS  Article  Google Scholar 

  40. 40.

    Maestro B, Campión J, Dávila N, Calle C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr J. 2000;47:383–91.

    CAS  Article  Google Scholar 

  41. 41.

    Maestro B, Molero S, Bajo S, Dávila N, Calle C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct. 2002;20:227–32.

    CAS  Article  Google Scholar 

  42. 42.

    Parker L, Levinger I, Mousa A, Howlett K, de Courten B. Plasma 25-hydroxyvitamin D is related to protein signaling involved in glucose homeostasis in a tissue-specific manner. Nutrients. 2016;8. https://doi.org/10.3390/nu8100631.

    Article  Google Scholar 

  43. 43.

    Mirmonsef P, Hotton AL, Gilbert D, Burgad D, Landay A, Weber KM, et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS ONE. 2014;9:e102467.

    Article  Google Scholar 

  44. 44.

    Wang T-T, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173:2909–12.

    CAS  Article  Google Scholar 

  45. 45.

    Hertting O, Holm Å, Lüthje P, Brauner H, Dyrdak R, Jonasson AF, et al. Vitamin D induction of the human antimicrobial Peptide cathelicidin in the urinary bladder. PLoS ONE. 2010;5:e15580.

    CAS  Article  Google Scholar 

  46. 46.

    McMahon L, Schwartz K, Yilmaz O, Brown E, Ryan LK, Diamond G. Vitamin D-mediated induction of innate immunity in gingival epithelial cells. Infect Immun. 2011;79:2250–6.

    CAS  Article  Google Scholar 

  47. 47.

    Brockman-Schneider RA, Pickles RJ, Gern JE. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS ONE. 2014;9:e86755.

    Article  Google Scholar 

  48. 48.

    Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol. 2007;157:1124–31.

    CAS  Article  Google Scholar 

  49. 49.

    Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:4.

    Article  Google Scholar 

  50. 50.

    Stout MJ, Zhou Y, Wylie KM, Tarr PI, Macones GA, Tuuli MG. Early pregnancy vaginal microbiome trends and preterm birth. Am J Obstet Gynecol. 2017;217:356.e1–18.

    Article  Google Scholar 

  51. 51.

    DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci USA. 2015;112:11060–5.

    CAS  Article  Google Scholar 

  52. 52.

    Fredricks DN, Fiedler TL, Thomas KK, Oakley BB, Marrazzo JM. Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol. 2007;45:3270–6.

    CAS  Article  Google Scholar 

  53. 53.

    Kusters JG, Reuland EA, Bouter S, Koenig P, Dorigo-Zetsma JW. A multiplex real-time PCR assay for routine diagnosis of bacterial vaginosis. Eur J Clin Microbiol Infect Dis. 2015;34:1779–85.

    CAS  Article  Google Scholar 

  54. 54.

    Nelson DB, Hanlon A, Nachamkin I, Haggerty C, Mastrogiannis DS, Liu C, et al. Early pregnancy changes in bacterial vaginosis-associated bacteria and preterm delivery. Paediatr Perinat Epidemiol. 2014;28:88–96.

    Article  Google Scholar 

  55. 55.

    Zozaya-Hinchliffe M, Martin DH, Ferris MJ. Prevalence and abundance of uncultivated Megasphaera-like bacteria in the human vaginal environment. Appl Environ Microbiol. 2008;74:1656–9.

    CAS  Article  Google Scholar 

  56. 56.

    Lennard K, Dabee S, Barnabas SL, Havyarimana E, Blakney A, Jaumdally SZ et al. Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females. Infect Immun. 2018;86. https://doi.org/10.1128/IAI.00410-17.

  57. 57.

    McClelland RS, Lingappa JR, Srinivasan S, Kinuthia J, John-Stewart GC, Jaoko W, et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. Lancet Infect Dis. 2018;18:554–64.

    Article  Google Scholar 

  58. 58.

    Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4:132ra52.

    Article  Google Scholar 

  59. 59.

    Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009;9:116.

    Article  Google Scholar 

  60. 60.

    Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;26:2341–57.

    CAS  Article  Google Scholar 

  61. 61.

    Wickham H. ggplot2 - elegant graphics for data analysis. Springer. http://www.springer.com/us/book/9780387981413 (accessed 13 Jul 2016).

Download references

Acknowledgements

This work was funded in part from a grant from the W. K. Kellogg Foundation and by the South Carolina Clinical & Translational Research (SCTR) Institute, with an academic home at the Medical University of South Carolina, NIH/NCAT Grant number UL1 TR000062. This work was also supported by National Institutes of Health [grant U54 DE023786 “A Multi-‘omic Analysis of the Vaginal Microbiome during Pregnancy”]. All sequencing and analysis of sequence data were performed in the Genomics Core of the Nucleic Acids Research Facilities at VCU.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gregory A. Buck or Carol L. Wagner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jefferson, K.K., Parikh, H.I., Garcia, E.M. et al. Relationship between vitamin D status and the vaginal microbiome during pregnancy. J Perinatol 39, 824–836 (2019). https://doi.org/10.1038/s41372-019-0343-8

Download citation

Further reading

  • Effects of vitamin D supplementation on circulating concentrations of growth factors and immune-mediators in healthy women during pregnancy

    • Aastha Khatiwada
    • , Bethany J. Wolf
    • , Jennifer K. Mulligan
    • , Judy R. Shary
    • , Martin Hewison
    • , John E. Baatz
    • , Danforth A. Newton
    • , Catherine Hawrylowicz
    • , Bruce W. Hollis
    •  & Carol L. Wagner

    Pediatric Research (2021)

  • The Integrative Human Microbiome Project

    Nature (2019)

  • The vaginal microbiome and preterm birth

    • Jennifer M. Fettweis
    • , Myrna G. Serrano
    • , J. Paul Brooks
    • , David J. Edwards
    • , Philippe H. Girerd
    • , Hardik I. Parikh
    • , Bernice Huang
    • , Tom J. Arodz
    • , Laahirie Edupuganti
    • , Abigail L. Glascock
    • , Jie Xu
    • , Nicole R. Jimenez
    • , Stephany C. Vivadelli
    • , Stephen S. Fong
    • , Nihar U. Sheth
    • , Sophonie Jean
    • , Vladimir Lee
    • , Yahya A. Bokhari
    • , Ana M. Lara
    • , Shreni D. Mistry
    • , Robert A. Duckworth
    • , Steven P. Bradley
    • , Vishal N. Koparde
    • , X. Valentine Orenda
    • , Sarah H. Milton
    • , Sarah K. Rozycki
    • , Andrey V. Matveyev
    • , Michelle L. Wright
    • , Snehalata V. Huzurbazar
    • , Eugenie M. Jackson
    • , Ekaterina Smirnova
    • , Jonas Korlach
    • , Yu-Chih Tsai
    • , Molly R. Dickinson
    • , Jamie L. Brooks
    • , Jennifer I. Drake
    • , Donald O. Chaffin
    • , Amber L. Sexton
    • , Michael G. Gravett
    • , Craig E. Rubens
    • , N. Romesh Wijesooriya
    • , Karen D. Hendricks-Muñoz
    • , Kimberly K. Jefferson
    • , Jerome F. Strauss
    •  & Gregory A. Buck

    Nature Medicine (2019)

Search

Quick links