Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elevated brain oxygen extraction fraction in preterm newborns with anemia measured using noninvasive MRI

Abstract

Objective

To test the hypothesis that cerebral oxygen extraction fraction (OEF) is elevated and inversely related to hematocrit level in anemic former very-low-birth-weight infants near term.

Study design

Prospective study of non-sedated preterm infants (post-menstrual age = 36 ± 2 weeks) over a range of hematocrits (0.23–0.49). Anatomical (T1-W, T2-W, and diffusion-weighted), cerebral blood flow (CBF), and OEF 3-T MRI were utilized. Statistical analysis included Spearman's rank-order correlation testing between study variables and intraclass correlation coefficients (ICC) calculated between consecutively acquired OEF scans.

Results

Consecutive OEF measurements showed moderate-to-good agreement (ICC = 0.71; 95% CI = 0.40–0.87). OEF increased with worsening anemia (ρ = −0.58; p = 0.005), and OEF and basal ganglia CBF were positively correlated (ρ = 0.49; p = 0.023).

Conclusion

Noninvasive OEF MRI has moderate-to-good repeatability in non-sedated former preterm infants nearing term-equivalent age. Strong correlation of elevated OEF with anemia suggests hemodynamic compensation for anemia and could establish OEF as a useful biomarker of transfusion threshold for preterm infants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Widness JA. Pathophysiology of anemia during the neonatal period, including anemia of prematurity. Neoreviews. 2008;9:e520.

    Article  Google Scholar 

  2. Strauss RG. Anaemia of prematurity: pathophysiology and treatment. Blood Rev. 2010;24:221–5.

    Article  CAS  Google Scholar 

  3. Keir AK, Yang J, Harrison A, Pelausa E, Shah PS. Temporal changes in blood product usage in preterm neonates born at less than 30 weeks’ gestation in Canada. Transfusion. 2015;55:1340–6.

    Article  Google Scholar 

  4. Bowen JR, Patterson JA, Roberts CL, Isbister JP, Irving DO, Ford JB. Red cell and platelet transfusions in neonates: a population-based study. Arch Dis Child Fetal Neonatal Ed. 2015;100:F411–5.

    Article  Google Scholar 

  5. Ekhaguere OA, Morriss FH Jr, Bell EF, Prakash N, Widness JA. Predictive factors and practice trends in red blood cell transfusions for very-low-birth-weight infants. Pediatr Res. 2016;79:736–41.

    Article  CAS  Google Scholar 

  6. Bell EF, Strauss RG, Widness JA, Mahoney LT, Mock DM, Seward VJ, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics. 2005;115:1685–91.

    Article  Google Scholar 

  7. Kirpalani H, Whyte RK, Andersen C, Asztalos EV, Heddle N, Blajchman MA, et al. The premature infants in need of transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149:301–7.

    Article  Google Scholar 

  8. Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Database Syst Rev. 2011;CD000512.

  9. Chen HL, Tseng HI, Lu CC, Yang SN, Fan HC, Yang RC. Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol. 2009;50:110–6.

    Article  Google Scholar 

  10. Ibrahim M, Ho SK, Yeo CL. Restrictive versus liberal red blood cell transfusion thresholds in very low birth weight infants: a systematic review and meta-analysis. J Paediatr Child Health. 2014;50:122–30.

    Article  Google Scholar 

  11. DeBaun MR, Gordon M, McKinstry RC, Noetzel MJ, White DA, Sarnaik SA, et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N Engl J Med. 2014;371:699–710.

    Article  Google Scholar 

  12. Dowling MM, Quinn CT, Plumb P, Rogers ZR, Rollins NK, Koral K, et al. Acute silent cerebral ischemia and infarction during acute anemia in children with and without sickle cell disease. Blood. 2012;120:3891–7.

    Article  CAS  Google Scholar 

  13. Zonnenberg IA, Vermeulen RJ, Rohaan MW, van Weissenbruch MM, Groenendaal F, de Vries LS. Severe neonatal anaemia, MRI findings and neurodevelopmental outcome. Neonatology. 2016;109:282–8.

    Article  CAS  Google Scholar 

  14. Vorstrup S, Lass P, Waldemar G, Brandi L, Schmidt JF, Johnsen A, et al. Increased cerebral blood flow in anemic patients on long-term hemodialytic treatment. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1992;12:745–9.

    Article  CAS  Google Scholar 

  15. Prohovnik I, Hurlet-Jensen A, Adams R, De Vivo D, Pavlakis SG. Hemodynamic etiology of elevated flow velocity and stroke in sickle-cell disease. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2009;29:803–10.

    Article  Google Scholar 

  16. Jordan LC, Gindville MC, Scott AO, Juttukonda MR, Strother MK, Kassim AA, et al. Noninvasive imaging of oxygen extraction fraction in adults with sickle cell anaemia. Brain: a J Neurol. 2016;139(Pt 3):738–50.

    Article  Google Scholar 

  17. Derdeyn CP, Videen TO, Grubb RL Jr, Powers WJ. Comparison of PET oxygen extraction fraction methods for the prediction of stroke risk. J Nucl Med: Off Publ, Soc Nucl Med. 2001;42:1195–7.

    CAS  Google Scholar 

  18. Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol. 2014;306:R773–86.

    Article  CAS  Google Scholar 

  19. Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magn Reson Med. 2008;60:357–63.

    Article  Google Scholar 

  20. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA. 1992;89:212–6.

    Article  CAS  Google Scholar 

  21. Liu P, Huang H, Rollins N, Chalak LF, Jeon T, Halovanic C, et al. Quantitative assessment of global cerebral metabolic rate of oxygen (CMRO2) in neonates using MRI. NMR Biomed. 2014;27:332–40.

    Article  CAS  Google Scholar 

  22. De Vis JB, Petersen ET, Alderliesten T, Groenendaal F, de Vries LS, van Bel F, et al. Noninvasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates. Neuroimage. 2014;95:185–92.

    Article  Google Scholar 

  23. Altman DI, Perlman JM, Volpe JJ, Powers WJ. Cerebral oxygen metabolism in newborns. Pediatrics. 1993;92:99–104.

    CAS  PubMed  Google Scholar 

  24. Elwell CE, Henty JR, Leung TS, Austin T, Meek JH, Delpy DT, et al. Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy. Adv Exp Med Biol. 2005;566:263–8.

    Article  Google Scholar 

  25. Skov L, Pryds O, Greisen G, Lou H. Estimation of cerebral venous saturation in newborn infants by near infrared spectroscopy. Pediatr Res. 1993;33:52–5.

    Article  CAS  Google Scholar 

  26. Yoxall CW, Weindling AM. Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age. Pediatr Res. 1998;44:283–90.

    Article  CAS  Google Scholar 

  27. Amiel-Tison C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol. 2002;27:196–212.

    Article  Google Scholar 

  28. Lu H, Donahue MJ, van Zijl PC. Detrimental effects of BOLD signal in arterial spin labeling fMRI at high field strength. Magn Reson Med. 2006;56:546–52.

    Article  Google Scholar 

  29. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102–16.

    Article  Google Scholar 

  30. Liu P, Chalak LF, Krishnamurthy LC, Mir I, Peng SL, Huang H, et al. T1 and T2 values of human neonatal blood at 3 Tesla: Dependence on hematocrit, oxygenation, and temperature. Magn Reson Med. 2016;75:1730–5.

    Article  Google Scholar 

  31. Chebbi R. Dynamics of blood flow: modeling of the Fahraeus-Lindqvist effect. J Biol Phys. 2015;41:313–26.

    Article  Google Scholar 

  32. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.

    Article  Google Scholar 

  33. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685–94.

    Article  CAS  Google Scholar 

  34. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA. 2000;284:1939–47.

    Article  CAS  Google Scholar 

  35. Vesoulis ZA, Mathur AM. Cerebral autoregulation, brain injury, and the transitioning premature infant. Front Pediatr. 2017;5:64.

    Article  Google Scholar 

  36. Vutskits L. Cerebral blood flow in the neonate. Paediatr Anaesth. 2014;24:22–9.

    Article  Google Scholar 

  37. Tortora D, Mattei PA, Navarra R, Panara V, Salomone R, Rossi A, et al. Prematurity and brain perfusion: Arterial spin labeling MRI. NeuroImage: Clin. 2017;15:401–7.

    Article  Google Scholar 

  38. De Vis JB, Hendrikse J, Petersen ET, de Vries LS, van Bel F, Alderliesten T, et al. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol. 2015;25:113–21.

    Article  Google Scholar 

  39. Tortora D, Mattei PA, Navarra R, Panara V, Salomone R, Rossi A, et al. Prematurity and brain perfusion: Arterial spin labeling MRI. NeuroImage: Clin. 2017;15:401–7.

    Article  Google Scholar 

  40. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Frontiers in Neuroanatomy. 2009;3:1–15.

  41. Counsell SJ, Maalouf EF, Fletcher AM, Duggan P, Battin M, Lewis HJ, et al. MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol. 2002;23:872–81.

    PubMed  Google Scholar 

  42. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain: a J Neurol. 2002;125(Pt 3):595–607.

    Article  Google Scholar 

  43. Wardle SP, Yoxall CW, Crawley E, Weindling AM. Peripheral oxygenation and anemia in preterm babies. Pediatr Res. 1998;44:125–31.

    Article  CAS  Google Scholar 

  44. Wardle SP, Yoxall CW, Weindling AM. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2000;20:272–9.

    Article  CAS  Google Scholar 

  45. Wardle SP, Garr R, Yoxall CW, Weindling AM. A pilot randomised controlled trial of peripheral fractional oxygen extraction to guide blood transfusions in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2002;86:F22–7.

    Article  CAS  Google Scholar 

  46. Wardle SP, Weindling AM. Peripheral fractional oxygen extraction and other measures of tissue oxygenation to guide blood transfusions in preterm infants. Semin Perinatol. 2001;25:60–4.

    Article  CAS  Google Scholar 

  47. Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 2004;23(Suppl 1):S275–88.

    Article  Google Scholar 

  48. Roche-Labarbe N, Fenoglio A, Aggarwal A, Dehaes M, Carp SA, Franceschini MA, et al. Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2012;32:481–8.

    Article  CAS  Google Scholar 

  49. Jain V, Buckley EM, Licht DJ, Lynch JM, Schwab PJ, Naim MY, et al. Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2014;34:380–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Vanderbilt Institute for Clinical and Translational Research and the Department of Pediatrics at Vanderbilt University Medical Center. We are grateful to our subjects’ families for allowing participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Morris.

Ethics declarations

Conflict of interest

MJD received research-related support from Philips North America. The remaining authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, E.A., Juttukonda, M.R., Lee, C.A. et al. Elevated brain oxygen extraction fraction in preterm newborns with anemia measured using noninvasive MRI. J Perinatol 38, 1636–1643 (2018). https://doi.org/10.1038/s41372-018-0229-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0229-1

Search

Quick links