Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preterm neuroimaging and neurodevelopmental outcome: a focus on intraventricular hemorrhage, post-hemorrhagic hydrocephalus, and associated brain injury

Abstract

Intraventricular hemorrhage in the setting of prematurity remains the most common cause of acquired hydrocephalus. Neonates with progressive post-hemorrhagic hydrocephalus are at risk for adverse neurodevelopmental outcomes. The goal of this review is to describe the distinct and often overlapping types of brain injury in the preterm neonate, with a focus on neonatal hydrocephalus, and to connect injury on imaging to neurodevelopmental outcome risk. Head ultrasound and magnetic resonance imaging findings are described separately. The current state of the literature is imprecise and we end the review with recommendations for future radiologic and neurodevelopmental research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A, Torgerson C, et al. Clinical neuroimaging in the preterm infant: diagnosis and prognosis. Neuroimage Clin. 2017;16:355–68.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Papile L, Burstein J, Burstein R, Koffier A. Incidence and evolution of subependymal and intraventricular hemorrhage in premature infants: a study of infants <1500 g. J Pediatr. 1978;92:529–34.

    Article  CAS  PubMed  Google Scholar 

  3. El-Dib M, Massaro AN, Bulas D, Aly H. Neuroimaging and neurodevelopmental outcome of premature infants. Am J Perinatol. 2010;27:803–18.

    Article  PubMed  Google Scholar 

  4. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: Saunders/Elsevier; 2008.

  5. Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol. 2001;6:135–46.

    Article  CAS  PubMed  Google Scholar 

  6. Raybaud C. MR assessment of pediatric hydrocephalus: a road map. Child’s Nerv Syst. 2016;32:19–41.

    Article  Google Scholar 

  7. Gould SJ, Howard S, Hope PL, Reynolds EOR. Periventricular intraparenchymal cerebral hemorrhage in preterm infants: the role of venous infarction. J Pathol. 1987;151:197–202.

    Article  CAS  PubMed  Google Scholar 

  8. Ment LR, Bada HS, Barnes P, Grant PE, Hirtz D, Papile LA, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;58:1726–38.

    Article  CAS  PubMed  Google Scholar 

  9. Pape KE, Blackwell RJ, Cusick G, Sherwood A, Houang MT, Thorburn RJ, et al. Ultrasound detection of brain damage in preterm infants. Lancet. 1979;1:1261–4.

    Article  CAS  PubMed  Google Scholar 

  10. Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child. 1981;56:900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brouwer MJ, de Vries LS, Groenendaal F, Koopman C, Pistorius LR, Mulder EJH, et al. New reference values for the neonatal cerebral ventricles. Radiology. 2012;262:224–33.

    Article  PubMed  Google Scholar 

  12. Sondhi V, Gupta G, Gupta PK, Patnaik SK, Tshering K. Establishment of nomograms and reference ranges for intra-cranial ventricular dimensions and ventriculo-hemispheric ratio in newborns by ultrasonography. Acta Paediatr. 2008;97:738–44.

    Article  PubMed  Google Scholar 

  13. Davies MW, Swaminathan M, Chuang SL, Betheras FR. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2000;82:218–23.

    Article  Google Scholar 

  14. Brouwer MJ, De Vries LS, Pistorius L, Rademaker KJ, Groenendaal F, Benders MJ. Ultrasound measurements of the lateral ventricles in neonates: why, how and when? A systematic review. Acta Paediatr. 2010;99:1298–306.

    Article  PubMed  Google Scholar 

  15. Hartenstein S, Bamberg C, Proquitté H, Metze B, Bührer C, Schmitz T. Birth weight-related percentiles of brain ventricular system as a tool for assessment of posthemorrhagic hydrocephalus and ventricular enlargement. J Perinat Med. 2016;44:179–85.

    Article  PubMed  Google Scholar 

  16. Wellons JC, Shannon CN, Kulkarni AV, Simon TD, Riva-Cambrin J, Whitehead WD, et al. A multicenter retrospective comparison of conversion from temporary to permanent cerebrospinal fluid diversion in very low birth weight infants with posthemorrhagic hydrocephalus. J Neurosurg Pediatr. 2009;4:50–55.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr. 2012;9:242–58.

    Article  PubMed  Google Scholar 

  18. Alan N, Manjila S, Minich N, Bass N, Cohen AR, Walsh M, et al. Reduced ventricular shunt rate in very preterm infants with severe intraventricular hemorrhage: an institutional experience. J Neurosurg Pediatr. 2009;10:357–64.

    Article  Google Scholar 

  19. Ayannuga OA, Shokunbi MT, Naicker TA. Myelin sheath injury in Kaolin-induced hydrocephalus: a light and electron microscopy study. Pediatr Neurosurg. 2016;51:61–8.

    Article  PubMed  Google Scholar 

  20. Hanlo PW, Gooskens RJ, van Schooneveld M, Tulleken CA, van der Knaap MS, Faber JA, et al. The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol. 1997;39:286–91.

    Article  CAS  PubMed  Google Scholar 

  21. Riva-Cambrin J, Shannon CN, Holubkov R, Whitehead WE, Kulkarni AV, Drake J, Hydrocephalus Clinical Research Network. et al. Center effect and other factors influencing temporization and shunting of cerebrospinal fluid in preterm infants with intraventricular hemorrhage. J Neurosurg Pediatr. 2012;9:473–81.

    Article  PubMed  PubMed Central  Google Scholar 

  22. de Vries LS, Groenendaal F, Liem KD, Heep A, Brouwer AJ, van’t Verlaat E, et al. Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial. Arch Dis Child - Fetal Neonatal Ed. 2018. https://doi.org/10.1136/archdischild-2017-314206

  23. Srinivasakumar P, Limbrick D, Munro R, Mercer D, Rao R, Inder T, et al. Posthemorrhagic ventricular dilatation—impact on early neurodevelopmental outcome. Am J Perinatol. 2013;30:207–14.

    PubMed  Google Scholar 

  24. Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R, NICHD Research Network. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion for the NICHD Research Network what’s known on this subject. Pediatrics. 2008;121:e1167.

    Article  PubMed  Google Scholar 

  25. Holwerda JC, Van Braeckel KNJA, Roze E, Hoving EW, Maathuis CGB, Brouwer OF, et al. Functional outcome at school age of neonatal post-hemorrhagic ventricular dilatation. Early Hum Dev. 2016;96:15–20.

    Article  PubMed  Google Scholar 

  26. Leung MP, Thompson B, Black J, Dai S, Alsweiler JM. The effects of preterm birth on visual development. Clin Exp Optom. 2018;101:4–12.

    Article  PubMed  Google Scholar 

  27. Guzzetta A, Fiori S, Scelfo D, Conti E, Bancale A. Reorganization of visual fields after periventricular haemorrhagic infarction: potentials and limitations. Dev Med Child Neurol. 2013;55(Suppl 4):23–6.

    Article  PubMed  Google Scholar 

  28. Roze E, Van Braeckel KN, van der Veere CN, Maathuis CG, Martijn A, Bos AF. Functional outcome at school age of preterm infants with periventricular hemorrhagic infarction. Pediatrics. 2009;123:1493–500.

    Article  PubMed  Google Scholar 

  29. Brouwer A, Groenendaal F, van Haastert I-L, Rademaker K, Hanlo P, de Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr. 2008;152:648–54.

    Article  PubMed  Google Scholar 

  30. Goldstein RF, Cotten CM, Shankaran S, Gantz MG, Poole WK. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Influence of gestational age on death and neurodevelopmental outcome in premature infants with severe intracranial hemorrhage. J Perinatol. 2013;33:25–32.

    Article  CAS  PubMed  Google Scholar 

  31. Tsai A, Lasky R, John S, Evans P, Kennedy K. Predictors of neurodevelopmental outcomes in preterm infants with intraparenchymal hemorrhage. J Perinatol. 2014;34:399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ment LR, Vohr B, Allan W, Westerveld M, Katz KH, Schneider KC, et al. The etiology and outcome of cerebral ventriculomegaly at term in very low birth weight preterm infants. Pediatrics. 1999;104:243–8.

    Article  CAS  PubMed  Google Scholar 

  33. Tam EW, Rosenbluth G, Rogers EE, Ferriero DM, Glidden D, Goldstein RB, et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr. 2011;158:245–50.

    Article  PubMed  Google Scholar 

  34. Brouwer MJ, de Vries LS, Pistorius L, Rademaker KJ, Groenendaal F, Benders MJNL. A systematic review. Ultrasound measurements of the lateral ventricles in neonates: why, how and when? Acta Paediatr. 2010;99:1298–306.

    Article  PubMed  Google Scholar 

  35. Vollmer B, Roth S, Baudin J, Stewart AL, Neville BGR, Wyatt JS. Predictors of long-term outcome in very preterm infants: gestational age versus neonatal cranial ultrasound. Pediatrics. 2003;112:1108–14.

    Article  PubMed  Google Scholar 

  36. Luu TM, Ment LR, Schneider KC, Katz KH, Allan WC, Vohr BR. Lasting effects of preterm birth and neonatal brain hemorrhage at 12 years of age what’s known on this subject. Pediatrics. 2009;123:1037–44.

    Article  PubMed  Google Scholar 

  37. Muller WD, Urlesberger B. Correlation of ventricular size and head circumference after severe intra-periventricular hemorrhage in preterm infants. Childs Nerv Syst. 1992;8:33–5.

    Article  CAS  PubMed  Google Scholar 

  38. Riva-Cambrin J, Shannon CN, Holubkov R, Whitehead WE, Kulkarni AV, Drake J, et al. Center effect and other factors influencing temporization and shunting of cerebrospinal fluid in preterm infants with intraventricular hemorrhage. J Neurosurg Pediatr. 2012;9:473–81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ingram M-CE, Huguenard AL, Miller BA, Chern JJ. Poor correlation between head circumference and cranial ultrasound findings in premature infants with intraventricular hemorrhage. J Neurosurg Pediatr. 2014;14:184–9.

    Article  PubMed  Google Scholar 

  40. Kuban K, Sanocka U, Leviton A, Allred EN, Pagano M, Dammann O, et al. White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. J Pediatr. 1999;134:539–46.

    Article  CAS  PubMed  Google Scholar 

  41. Kuban KCK, Allred EN, O’Shea TM, Paneth N, Pagano M, Dammann O, et al. Cranial ultrasound lesions in the NICU predict cerebral palsy at age 2 years in children born at extremely low gestational age. J Child Neurol. 2009;24:63–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics. 2001;107:719–27.

    Article  CAS  PubMed  Google Scholar 

  43. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Vries LS, Eken F’, Dubowitz LS. The spectrum of leukomalacia using cranial ultra- sound. Behav Brain Res. 1992;49:1–6.

    Article  PubMed  Google Scholar 

  45. Horsch S, Bengtsson J, Nordell A, Lagercrantz H, Ådén U, Blennow M. Lateral ventricular size in extremely premature infants: 3D MRI confirms 2D ultrasound measurements. Ultrasound Med Biol. 2009;35:360–6.

    Article  PubMed  Google Scholar 

  46. Hintz SR, Slovis T, Bulas D, Van Meurs KP, Perritt R, Stevenson DK, et al. Interobserver reliability and accuracy of cranial ultrasound scanning interpretation in premature infants. J Pediatr. 2007;150:592–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol. 2003;24:805–9.

    PubMed  PubMed Central  Google Scholar 

  48. Kuban K, Adler I, Allred EN, Batton D, Bezinque S, Betz BW, et al. Observer variability assessing US scans of the preterm brain: the ELGAN study. Pediatr Radiol. 2007;37:1201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leijser LM, Miller SP, van Wezel-Meijler G, Brouwer AJ, Traubici J, van Haastert IC, et al. Posthemorrhagic ventricular dilatation in preterm infants: when best to intervene? Neurology. 2018;90:e698–e706.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Govaert P, de Vries LS An atlas of neonatal brain sonography. London: Mac Keith Press; 1997.

  51. Zamora C, Tekes A, Alqahtani E, Kalayci OT, Northington F, Huisman TaGM. Variability of resistive indices in the anterior cerebral artery during fontanel compression in preterm and term neonates measured by transcranial duplex sonography. J Perinatol. 2014;34:306–10.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor GA, Madsen JR. Neonatal hydrocephalus: hemodynamic response to fontanelle compression correlation with intracranial pressure and need for shunt placement: pediatric. Radiol Radiol. 1996;201:685–9.

    Article  CAS  Google Scholar 

  53. Taylor GA, Phillips MD, Ichord RN, Carson BS, Gates JA, James CS. Intracranial compliance in infants: evaluation with doppler US. Radiology. 1994;191:787–91.

    Article  CAS  PubMed  Google Scholar 

  54. Seibert JJ, McCowan TC, Chadduck WM, Adametz JR, Glasier CM, Williamson SL, et al. Duplex pulsed Doppler US versus intracranial pressure in the neonate: clinical and experimental studies. Radiology. 1989;171:155–9.

    Article  CAS  PubMed  Google Scholar 

  55. Goh D, Minns RA, Hendry GM, Thambyayah M, Steers AJ. Cerebrovascular resistive index assessed by duplex doppler sonography and its relationship to intracranial pressure in infantile hydrocephalus. Pediatr Radiol. 1992;22:246–50.

    Article  CAS  PubMed  Google Scholar 

  56. Nishimaki S, Iwasaki Y, Akamatsu H. Cerebral blood flow velocity before and after cerebrospinal fluid drainage in infants with posthemorrhagic hydrocephalus. J Ultrasound Med. 2004;23:1315–9.

    Article  PubMed  Google Scholar 

  57. Leliefeld PH, Gooskens RHJM, Tulleken CAF, Regli L, Uiterwaal CSPM, Han KS, et al. Noninvasive detection of the distinction between progressive and compensated hydrocephalus in infants: is it possible? J Neurosurg Pediatr. 2010;5:562–8.

    Article  PubMed  Google Scholar 

  58. Kahle KT, Kulkarni AV, Limbrick DD, Warf BC. Hydrocephalus in children. Lancet. 2016;387:788–9.

    Article  PubMed  Google Scholar 

  59. O’Shea TM, Kuban KC, Allred EN, Paneth N, Pagano M, Dammann O, et al. Neonatal cranial ultrasound lesions and developmental delays at 2 years of age among extremely low gestational age children. Pediatrics. 2008;122:e662–9.

    Article  PubMed  Google Scholar 

  60. Fox LM, Choo P, Rogerson SR, Spittle AJ, Anderson PJ, Doyle L, et al. The relationship between ventricular size at 1 month and outcome at 2 years in infants less than 30 weeks’ gestation. Arch Dis Child Fetal Neonatal Ed. 2014;99:F209–14.

    Article  PubMed  Google Scholar 

  61. Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics. 2006;118:536–48.

    Article  PubMed  Google Scholar 

  62. Ment LR, Schneider KC, Ainley MA, Allan WC. Adaptive mechanisms of developing brain: the neuroradiologic assessment of the preterm infant. Clin Perinatol. 2000;27:303–23.

    Article  CAS  PubMed  Google Scholar 

  63. Kuban KSK, Leviton A. Cerebral palsy. N Engl J Med. 1994;330:188–94.

    Article  CAS  PubMed  Google Scholar 

  64. Saliba E, Bertrand P, Gold F, Marchand S, Laugier J. Area of lateral ventricles measured on cranial ultrasonography in preterm infants: association with outcome. Arch Dis Child. 1990;65:1033–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pappas A, Adams-Chapman I, Shankaran S, McDonald SA, Stoll BJ, Laptook AR, et al. Neurodevelopmental and behavioral outcomes in extremely premature neonates with ventriculomegaly in the absence of periventricular-intraventricular hemorrhage. JAMA Pediatr. 2018;172:32–42.

    Article  PubMed  Google Scholar 

  66. Guzzetta F, Shackelford GD, Volpe S, Perlman JM, Volpe JJ. Periventricular intraparenchymal echodensities in the premature newborn: critical determinant of neurologic outcome. Pediatrics 1986;78:995–1006.

    Article  CAS  PubMed  Google Scholar 

  67. Jacobson L, Ek U, Femell E, Flodmark O, Broberger U. Visual impairment in preterm children with periventricular leukomalacia-visual, cognitive and neuropaediatric characteristics related to cerebral imaging. Dev Med Child Neurol. 1996;38:724–35.

    Article  CAS  PubMed  Google Scholar 

  68. Mirmiran M, Barnes PD, Keller K, Constantinou JC, Fleisher BE, Hintz SR, et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics. 2004;114:992.

    Article  PubMed  Google Scholar 

  69. Maitre NL, Marshall DD, Price WA, Slaughter JC, O’Shea TM, Maxfield C, et al. Neurodevelopmental outcome of infants with unilateral or bilateral periventricular hemorrhagic infarction. Pediatrics. 2009;124:e1153–60.

    Article  PubMed  Google Scholar 

  70. Tully HM, Wenger TL, Kukull WA, Doherty D, Dobyns WB. Anatomical configurations associated with posthemorrhagic hydrocephalus among premature infants with intraventricular hemorrhage. Neurosurg Focus. 2016;41:E5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. 2013;34:2208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van’t Hooft J, van der Lee JH, Opmeer BC, Aarnoudse-Moens, CSH, Leenders AGE, Mol BWJ, et al. Predicting developmental outcomes in premature infants by term equivalent MRI: systematic review and meta-analysis. Syst Rev. 2015;4:71.

  73. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685–94.

    Article  CAS  PubMed  Google Scholar 

  74. Woodward LJ, Clark CAC, Bora S, Inder TE. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS ONE. 2012;7:e51879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vasileiadis GT, Gelman N, Han VKM, Williams L-A, Mann R, Bureau Y, et al. Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics. 2004;114:e367.

    Article  PubMed  Google Scholar 

  76. Thompson DK, Inder TE, Faggian N, Warfield SK, Anderson PJ, Doyle LW, et al. Corpus callosum alterations in very preterm infants: perinatal correlates and 2 year neurodevelopmental outcomes. Neuroimage. 2012;59:3571–81.

    Article  PubMed  Google Scholar 

  77. Brouwer MJ, De Vries LS, Kersbergen KJ, Van Der Aa NE, Brouwer AJ, Viergever MA, et al. Effects of posthemorrhagic ventricular dilatation in the preterm infant on brain volumes and white matter diffusion variables at term-equivalent age. J Pediatr. 2016;168:41–9.

    Article  PubMed  Google Scholar 

  78. Maunu J, Parkkola R, Rikalainen H, Lehtonen L, Haataja L, Lapinleimu H, et al. Brain and ventricles in very low birth weight infants at term: a comparison among head circumference, ultrasound, and magnetic resonance imaging what’s known on this subject. Pediatrics. 2009;123:617–26.

    Article  PubMed  Google Scholar 

  79. Keunen K, Isgum I, van Kooij BJM, Anbeek P, van Haastert IC, Koopman-Esseboom C, et al. Brain volumes at term-equivalent age in preterm infants: imaging biomarkers for neurodevelopmental outcome through early school age. J Pediatr. 2016;172:88–95.

    Article  PubMed  Google Scholar 

  80. Nosarti C, Giouroukou E, Healy E, Rifkin L, Walshe M, Reichenberg A, et al. Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain. 2008;131:205–17.

    Article  PubMed  Google Scholar 

  81. Cheong JLY, Thompson DK, Spittle AJ, Potter CR, Walsh JM, Burnett AC, et al. Brain volumes at term-equivalent age are associated with 2-year neurodevelopment in moderate and late preterm children. J Pediatr. 2016;174:91–7.

    Article  PubMed  Google Scholar 

  82. Fletcher JM, Brookshire BL, Bohan TP, Brandt ME, Davidson KC. Early hydrocephalus. In: Rourke BP, editor. Syndrome of nonverbal learning disabilities. Neurodevelopmental manifestations. New York: Guildford Press; 1995. p. 206–38.

  83. Woodward LJ, Edgin JO, Thompson D, Inder TE, Woodward L. Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain. 2005;128:2578–87.

    Article  PubMed  Google Scholar 

  84. Bora S, Pritchard VE, Chen Z, Inder TE, Woodward LJ. Neonatal cerebral morphometry and later risk of persistent inattention/hyperactivity in children born very preterm. J Child Psychol Psychiatry. 2014;55:828–38.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fletcher JM, Bohan TP, Brandt ME, Brookshire BL, Beaver SR, Francis DJ. Cerebral white matter and cognition in hydrocephalic children. Arch Neurol. 1992;49:818–24.

    Article  CAS  PubMed  Google Scholar 

  86. Fletcher JM, Bohan TP, Brandt ME, Kramer LA, Brookshire BL, Thorstad K, et al. Morphometric evaluation of the hydrocephalic brain: relationships with cognitive development. Child’s Nerv Syst. 1996;12:192–9.

    Article  CAS  Google Scholar 

  87. Dennis M, Fitz CR, Netley CT, Sugar J, Harwood-Nash DC, Hendrick EB, et al. The intelligence of hydrocephalic children. Arch Neurol. 1981;38:607–15.

    Article  CAS  PubMed  Google Scholar 

  88. Mataró M, Junqué C, Poca MA, Sahuquillo J. Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev. 2001;11:169–78.

    Article  PubMed  Google Scholar 

  89. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics. 2005;115:286–94.

    Article  PubMed  Google Scholar 

  90. Lind A, Parkkola R, Lehtonen L, Munck P, Maunu J, Lapinleimu H, et al. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol. 2011;41:953–61.

    Article  PubMed  Google Scholar 

  91. Leliefeld PH, Gooskens RHJM, Braun KPJ, Ramos LMP, Uiterwaal CSP, Regli LPE, et al. Longitudinal diffusion-weighted imaging in infants with hydrocephalus: decrease in tissue water diffusion after cerebrospinal fluid diversion. J Neurosurg Pediatr. 2009;4:56–63.

    Article  Google Scholar 

  92. Brouwer MJ, van Kooij BJ, van Haastert IC, Koopman-Esseboom C, Groenendaal F, de Vries LS, et al. Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants. PLoS ONE. 2014;9:e109556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Partridge SC, Mukherjee P, Henry RG, Miller SP, Berman JI, Jin H, et al. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage. 2004;22:1302–14.

    Article  PubMed  Google Scholar 

  94. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17:1429–36.

    Article  PubMed  Google Scholar 

  95. Takahashi M, Ono J, Harada K, Maeda M, Hackney DB. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology. 2000;216:881–5.

    Article  CAS  PubMed  Google Scholar 

  96. Duerden EG, Taylor MJ, Miller SP. Brain development in infants born preterm: looking beyond injury. Semin Pediatr Neurol. 2013;20:65–74.

    Article  PubMed  Google Scholar 

  97. Rose J, Butler EE, Lamont LE, Barnes PD, Atlas SW, Stevenson DK. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birth weight preterm children. Dev Med Child Neurol. 2009;51:526–35.

    Article  PubMed  Google Scholar 

  98. Rose J, Vassar R, Cahill-Rowley K, Guzman XS, Stevenson DK, Barnea-Goraly N. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. Neuroimage. 2014;86:244–56.

    Article  PubMed  Google Scholar 

  99. Gao W, Lin W, Chen Y, Gerig G, Smith JK, Jewells V, et al. Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. Am J Neuroradiol. 2008;30:290–6.

    Article  PubMed  Google Scholar 

  100. Rose J, Vassar R, Cahill-Rowley K, Stecher Guzman X, Hintz SR, Stevenson DK, et al. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants. Neuroimage Clin. 2014;5:169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Adams E, Chau V, Poskitt KJ, Grunau RE, Synnes A, Miller SP. Tractography-based quantitation of corticospinal tract development in premature newborns. J Pediatr. 2010;156:882–8.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ben-Sira L, Goder N, Bassan H, Lifshits S, Assaf Y, Constantini S. Clinical benefits of diffusion tensor imaging in hydrocephalus. J Neurosurg Pediatr. 2015;16:195–202.

    Article  PubMed  Google Scholar 

  103. Akbari SH, Limbrick DD Jr, McKinstry RC, Altaye M, Ragan DK, Yuan W, et al. Periventricular hyperintensity in children with hydrocephalus. Pediatr Radiol. 2015;45:1189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mangano FT, Altaye M, McKinstry RC, Shimony JS, Powell SK, Phillips JM, et al. DTI study of children with congenital hydrocephalus: 1 year post-surgical outcomes. J Neurosurg Pediatr. 2016;18:306–19.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yuan W, Mangano FT, Air EL, Holland SK, Jones BV, Altaye M, et al. Anisotropic diffusion properties in infants with hydrocephalus: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2009;30:1792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yuan W, McKinstry RC, Shimony JS, Altaye M, Powell SK, Phillips JM. Diffusion tensor imaging properties and neurobehavioral outcomes in children with hydrocephalus. AJNR Am J Neuroradiol. 2013;34:439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Air EL, Yuan W, Holland SK, Jones BV, Bierbrauer K, Altaye M. Longitudinal comparison of pre- and postoperative diffusion tensor imaging parameters in young children with hydrocephalus. J Neurosurg Pediatr. 2010;5:385–39.

    Article  PubMed  Google Scholar 

  108. Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM, Barkovich AJ, et al. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage. 2005;27:862–71.

    Article  PubMed  Google Scholar 

  109. Rose J, Mirmiran M, Butler EE, Lin CY, Barnes PD, Kermoian R. Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol. 2007;49:745–50.

    Article  PubMed  Google Scholar 

  110. Arzoumanian Y, Mirmiran M, Barnes PD, Woolley K, Ariagno RL, Moseley ME, et al. Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol. 2003;24:1646–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun M, Yuan W, Hertzler DA, Cancelliere A, Altaye M, Mangano FT. Diffusion tensor imaging findings in young children with benign external hydrocephalus differ from the normal population. Child’s Nerv Syst. 2012;28:199–208.

    Article  CAS  Google Scholar 

  112. Rose J, Cahill-Rowley K, Vassar R, Yeom KW, Stecher X, Stevenson DK, et al. Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18–22 mo of age: an MRI and DTI study. Pediatric Research 2015;78:700–8.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the Thomas Wilson Sanitarium For Children of Baltimore City awarded to Rebecca Dorner and Marilee Allen and the NIH T32 Training Grant (5T32HL125239-03) awarded to Rebecca Dorner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Dorner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorner, R.A., Burton, V.J., Allen, M.C. et al. Preterm neuroimaging and neurodevelopmental outcome: a focus on intraventricular hemorrhage, post-hemorrhagic hydrocephalus, and associated brain injury. J Perinatol 38, 1431–1443 (2018). https://doi.org/10.1038/s41372-018-0209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0209-5

This article is cited by

Search

Quick links