Evidence of a gene–environment interaction of NODAL variants and inflammation in preterm birth

Abstract

Objective

NODAL has been implicated in timing of parturition and immune regulation. We investigated the relationship between NODAL polymorphisms, infection/inflammation, and preterm birth.

Study design

For this secondary analysis, 613 women (189 preterm and 424 term) from the Montreal Prematurity Study were genotyped for NODAL polymorphisms and assessed for bacterial vaginosis and placental inflammation.

Result

NODAL polymorphisms were not associated with preterm birth. However, the rs2231947(C>T) variant allele was associated with increased risk for preterm birth among women with bacterial vaginosis (odds ratio: 2.76, 95% confidence interval: 1.12−6.85). Among women without placental inflammation, the rs1904589(A>G) variant allele was associated with increased risk of preterm birth (odds ratio: 1.31, 95% confidence interval: 1.02−1.70). Among women with placental inflammation, the rs10999338(C>T) variant allele was associated with reduced risk of preterm birth (odds ratio: 0.50, 95% confidence interval: 0.29−0.87).

Conclusion

The effect of NODAL polymorphisms on preterm birth depends on maternal infection/inflammation status.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–72.

    Article  Google Scholar 

  2. 2.

    Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.

    Article  Google Scholar 

  3. 3.

    Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359:262–73.

    CAS  Article  Google Scholar 

  4. 4.

    Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–7.

    CAS  Article  Google Scholar 

  5. 5.

    Bastek JA, Gómez LM, Elovitz MA. The role of inflammation and infection in preterm birth. Clin Perinatol. 2011;38:385–406.

    Article  Google Scholar 

  6. 6.

    Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002;66:445–9.

    CAS  Article  Google Scholar 

  7. 7.

    Salafia CM, Vogel CA, Vintzileos AM, Bantham KF, Pezzullo J, Silberman L. Placental pathologic findings in preterm birth. Am J Obstet Gynecol. 1991;165:934–8.

    CAS  Article  Google Scholar 

  8. 8.

    Newton ER, Piper J, Peairs W. Bacterial vaginosis and intraamniotic infection. Am J Obstet Gynecol. 1997;176:672–7.

    CAS  Article  Google Scholar 

  9. 9.

    Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209:505–23.

    Article  Google Scholar 

  10. 10.

    Mitchell C, Marrazzo J. Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol. 2014;71:555–63.

    CAS  Article  Google Scholar 

  11. 11.

    Lamont RF. Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth. BJOG. 2003;110:71–75.

    Article  Google Scholar 

  12. 12.

    Goffinet F, Maillard F, Mihoubi N, Kayem G, Papiernik E, Cabrol D, et al. Bacterial vaginosis: prevalence and predictive value for premature delivery and neonatal infection in women with preterm labour and intact membranes. Eur J Obstet Gynecol Reprod Biol. 2003;108:146–51.

    CAS  Article  Google Scholar 

  13. 13.

    Wang Y, Yang X, Zheng Y, Wu Z-H, Zhang X-A, Li Q-P, et al. The SEPS1 G-105A polymorphism is associated with risk of spontaneous preterm birth in a Chinese population. PLoS ONE. 2013;8:e65657.

    CAS  Article  Google Scholar 

  14. 14.

    Roberts AK, Monzon-Bordonaba F, Van Deerlin PG, Holder J, Macones GA, Morgan MA, et al. Association of polymorphism within the promoter of the tumor necrosis factor α gene with increased risk of preterm premature rupture of the fetal membranes. Am J Obstet Gynecol. 1999;180:1297–302.

    CAS  Article  Google Scholar 

  15. 15.

    Macones GA, Parry S, Elkousy M, Clothier B, Ural SH, Strauss JF. A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of gene-environment interaction in the etiology of spontaneous preterm birth. Am J Obstet Gynecol. 2004;190:1504–8.

    CAS  Article  Google Scholar 

  16. 16.

    Iannaccone PM, Zhou X, Khokha M, Boucher D, Kuehn MR. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn. 1992;194:198–208.

    CAS  Article  Google Scholar 

  17. 17.

    Brennan J, Norris DP, Robertson EJ. Nodal activity in the node governs left-right asymmetry. Genes Dev. 2002;16:2339–44.

    CAS  Article  Google Scholar 

  18. 18.

    Park C, Dufort D. Nodal expression in the uterus of the mouse is regulated by the embryo and correlates with implantation. Biol Reprod. 2011;84:1103–10.

    CAS  Article  Google Scholar 

  19. 19.

    Thulluru HK, Park C, Dufort D, Kleiverda G, Oudejans C, van Dijk M. Maternal nodal inversely affects NODAL and STOX1 expression in the fetal placenta. Front Genet. 2013;4:170.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Park C, Dufort D. Elsevier trophoblast research award lecture: the multifaceted role of nodal signaling during mammalian reproduction. Placenta. 2011;32:S125–S129.

    Article  Google Scholar 

  21. 21.

    Park C, DeMayo FJ, Lydon J, Dufort D. NODAL in the uterus is necessary for proper placental development and maintenance of pregnancy. Biol Reprod. 2012;86:194.

    Article  Google Scholar 

  22. 22.

    Wang XF, Wang HS, Zhang F, Guo Q, Wang H, Wang KF, et al. Nodal promotes the generation of M2-like macrophages and downregulates the expression of IL-12. Eur J Immunol. 2014;44:173–83.

    CAS  Article  Google Scholar 

  23. 23.

    Zhang D, Bao YL, Yu CL, Wang Y, Song Z-B. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-kB signaling. Immunol Res. 2016;64:104–14.

    CAS  Article  Google Scholar 

  24. 24.

    Kramer MS, Goulet L, Lydon J, Séguin L, McNamara H, Dassa C, et al. Socio-economic disparities in preterm birth: causal pathways and mechanisms. Paediatr Perinat Epidemiol. 2001;15 Suppl 2:104–23.

    CAS  Article  Google Scholar 

  25. 25.

    Kramer MS, Wilkins R, Goulet L, Séguin L, Lydon J, Kahn SR, et al. Investigating socio-economic disparities in preterm birth: evidence for selective study participation and selection bias. Paediatr Perinat Epidemiol. 2009;23:301–9.

    Article  Google Scholar 

  26. 26.

    Libman MD, Kramer MS, Platt RW. Comparison of Gram and Kopeloff stains in the diagnosis of bacterial vaginosis in pregnancy. Diagn Microbiol Infect Dis. 2006;54:197–201.

    Article  Google Scholar 

  27. 27.

    Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of Gram stain interpretation. J Clin Microbiol. 1991;29:297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kramer MS, Chen MF, Roy I, Dassa C, Lamoureux J, Kahn SR, et al. Intra- and interobserver agreement and statistical clustering of placental histopathologic features relevant to preterm birth. Am J Obstet Gynecol. 2006;195:1674–9.

    Article  Google Scholar 

  29. 29.

    Luong ML, Libman M, Dahhou M, Chen MF, Kahn SR, Goulet L, et al. Vaginal douching, bacterial vaginosis, and spontaneous preterm birth. J Obstet Gynaecol Can. 2010;32:313–20.

    Article  Google Scholar 

  30. 30.

    Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  31. 31.

    Peduzzi P, Concato J, Kemper E, Holford TR, Feinstem AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9.

    CAS  Article  Google Scholar 

  32. 32.

    Danecek P, Auton A, Abecasis GR, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.

    CAS  Article  Google Scholar 

  33. 33.

    Nadeau HCG, Subramaniam A, Andrews WW. Infection and preterm birth. Semin Fetal Neonatal Med. 2016;21:100–5.

    Article  Google Scholar 

  34. 34.

    Menon R, Dunlop AL, Kramer MR, Fortunato SJ, Hogue CJ. An overview of racial disparities in preterm birth rates: caused by infection or inflammatory response? Acta Obs Gynecol Scand. 2011;90:1325–31.

    Article  Google Scholar 

  35. 35.

    Stallmach T, Hebisch G, Joller H, Kolditz P, Engelmann M. Expression pattern of cytokines in the different compartments of the feto-maternal unit under various conditions. Reprod Fertil Dev. 1995;7:1573–80.

    CAS  Article  Google Scholar 

  36. 36.

    Imseis HM, Greig PC, Livengood CH, Shunior E, Durda P, Erikson M. Characterization of the inflammatory cytokines in the vagina during pregnancy and labor with bacterial vaginosis. J Soc Gynecol Investig. 1997;4:90–94.

    CAS  Article  Google Scholar 

  37. 37.

    Himes KP, Simhan HN. Genetic susceptibility to infection-mediated preterm birth. Infect Dis Clin NA. 2008;22:741–53.

    Article  Google Scholar 

  38. 38.

    Karody V, Le M, Nelson S, Meskin K, Klemm S, Simpson P, et al. A TIR domain receptor-associated protein (TIRAP) variant SNP (rs8177374) confers protection against premature birth. J Perinatol. 2013;33:341–6.

    CAS  Article  Google Scholar 

  39. 39.

    Simhan HN, Krohn MA, Roberts JM, Zeevi A, Caritis SN. Interleukin-6 promoter - 174 polymorphism and spontaneous preterm birth. Am J Obstet Gynecol. 2003;189:915–8.

    CAS  Article  Google Scholar 

  40. 40.

    Sheikh IA, Ahmad E, Jamal MS, Rehan M, Assidi M, Tayubi IA, et al. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update. BMC Genomics. 2016;17:759.

    Article  Google Scholar 

  41. 41.

    Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362:529–35.

    CAS  Article  Google Scholar 

  42. 42.

    Roessler E, Pei W, Ouspenskaia M, Karkera JD, Veléz JI, Banerjee-Basu S, et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol Genet Metab. 2009;98:225–34.

    CAS  Article  Google Scholar 

  43. 43.

    Adachi H, Saijoh Y, Mochida K, Ohishi S, Hashiguchi H, Hirao A, et al. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 1999;13:1589–1600.

    CAS  Article  Google Scholar 

  44. 44.

    Frey HA, Stout MJ, Pearson LN, Tuuli MG, Cahill AG, Strauss JF, et al. Genetic variation associated with preterm birth in African-American women. Am J Obstet Gynecol. 2016;215:235.e1–235.e8.

    CAS  Article  Google Scholar 

  45. 45.

    Findlay SD, Postovit LM. Brief report: common genetic variation in chromosome 10q22.1 shows a strong sex bias in human embryonic stem cell lines and directly controls the novel alternative splicing of human NODAL which is associated with XIST expression in female cell lines. Stem Cells. 2016;34:791–6.

    CAS  Article  Google Scholar 

  46. 46.

    Simmons LE, Rubens CE, Darmstadt GL, Gravett MG. Preventing preterm birth and neonatal mortality: exploring the epidemiology, causes, and interventions. Semin Perinatol. 2010;34:408–15.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Michael Kramer, Mourad Dahhou, and the members of the Montreal Prematurity Study Group. We also thank the McGill University and Genome Quebec Innovation Centre (Montreal, Canada) for performing SNP discovery and Sanger sequencing. We thank all of the women for their generous participation in this study.

Funding

This study was funded by March of Dimes Grant No. 21-FY14-130. LMS was supported by a Toronto Dominion Bank Post-Doctoral Fellowship for Child Health Research Excellence. TH was supported by the Ministry of Higher Education of Saudi Arabia. Support for the Montreal Prematurity Study was provided by the Perinatal Epidemiological Research Iniviative Program Grant No 20-FY04-38 from the March of Dimes Birth Defects Foundation. The funders had no role in study design, data collection and analysis, interpretation of data, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Dufort.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starr, L.M., Heba, T. & Dufort, D. Evidence of a gene–environment interaction of NODAL variants and inflammation in preterm birth. J Perinatol 38, 482–488 (2018). https://doi.org/10.1038/s41372-018-0073-3

Download citation

Further reading