Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the link between blood pressure variability and atrial fibrillation: current insights and future directions

Abstract

Atrial fibrillation (AF) is the most common heart rhythm disorder, especially in people over the age of 50, which affects more than 40 million people worldwide. Many studies have highlighted the association between hypertension with the development of AF. Blood pressure variability (BPV) is a dynamic size obtained by recording blood pressure oscillations using specific readings and at specific time intervals. A multitude of internal and external factors shape BPV while at the same time constituting a common pathogenetic pathway with the development of AF. Until recently, BPV has been applied exclusively in preclinical and clinical studies, without significant implications in clinical practice. Indeed, even from the research side, the determination of BPV is limited to patients without AF due to doubts about the accuracy of its measurement methods in patients with AF. In this review, we present the current evidence on common pathogenic pathways between BPV and AF, the reliability of quantification of BPV in patients with AF, the prognostic role of BPV in these patients, and discuss the future clinical implications of BPV in patients with AF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of blood pressure variability, measurement techniques and main shaping factors.
Fig. 2: Schematic diagram highlighting the bidirectional pathogenetic link of blood pressure variability and atrial fibrillation.

Similar content being viewed by others

Data availability

All data supporting reported results can be found on PubMed. The details are provided in References.

References

  1. Ushigome E, Fukui M, Hamaguchi M, Tanaka T, Atsuta H, Mogami S, et al. Factors affecting variability in home blood pressure in patients with type 2 diabetes: post hoc analysis of a cross-sectional multicenter study. J Hum Hypertens. 2014;28:594–9.

    Article  CAS  PubMed  Google Scholar 

  2. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10:143–55.

    Article  PubMed  Google Scholar 

  3. Stergiou GS, Kyriakoulis KG, Kollias A. Office blood pressure measurement types: Different methodology-Different clinical conclusions. J Clin Hypertens. 2018;20:1683–5.

    Article  Google Scholar 

  4. Cremer A, Doublet J, Boulestreau R, Gaudissard J, Tzourio C, Gosse P. Short-term blood pressure variability, arterial stiffness, and cardiovascular events: results from the Bordeaux cohort. J Hypertens. 2021;39:947–51.

    Article  CAS  PubMed  Google Scholar 

  5. Irigoyen M-C, De Angelis K, Dos Santos F, Dartora DR, Rodrigues B, Consolim-Colombo FM. Hypertension, blood pressure variability, and target organ lesion. Curr Hypertens Rep. 2016;18:31.

    Article  PubMed  Google Scholar 

  6. Wang J, Shi X, Ma C, Zheng H, Xiao J, Bian H, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease. J Hypertens. 2017;35:10–17.

    Article  CAS  PubMed  Google Scholar 

  7. de Heus RAA, Tzourio C, Lee EJL, Opozda M, Vincent AD, Anstey KJ, et al. Association between blood pressure variability with dementia and cognitive impairment: a systematic review and meta-analysis. Hypertension. 2021;78:1478–89.

    Article  PubMed  Google Scholar 

  8. Madden JM, O’Flynn AM, Fitzgerald AP, Kearney PM. Correlation between short-term blood pressure variability and left-ventricular mass index: a meta-analysis. Hypertens Res. 2016;39:171–7.

    Article  PubMed  Google Scholar 

  9. Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375:906–15.

    Article  CAS  PubMed  Google Scholar 

  10. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsioufis C, Konstantinidis D, Nikolakopoulos I, Vemmou E, Kalos T, Georgiopoulos G, et al. Biomarkers of atrial fibrillation in hypertension. Curr Med Chem. 2019;26:888–97.

    Article  CAS  PubMed  Google Scholar 

  12. Schoonderwoerd BA, Van Gelder IC, Van Veldhuisen DJ, Van den Berg MP, Crijns HJGM. Electrical and structural remodeling: role in the genesis and maintenance of atrial fibrillation. Prog Cardiovasc Dis. 2005;48:153–68.

    Article  PubMed  Google Scholar 

  13. Alkhouli M, Friedman PA. Ischemic stroke risk in patients with nonvalvular atrial fibrillation: JACC review topic of the week. J Am Coll Cardiol. 2019;74:3050–65.

    Article  PubMed  Google Scholar 

  14. Lee S-R, Choi Y-J, Choi E-K, Han K-D, Lee E, Cha M-J, et al. Blood pressure variability and incidence of new-onset atrial fibrillation: a nationwide population-based study. Hypertension. 2020;75:309–15.

    Article  CAS  PubMed  Google Scholar 

  15. Su H, Guo Z. Accuracy of non-invasive blood pressure measurement in patients with atrial fibrillation. J Hum Hypertens. 2022;36:229–34.

    Article  PubMed  Google Scholar 

  16. Sykes D, Dewar R, Mohanaruban K, Donovan K, Nicklason F, Thomas DM, et al. Measuring blood pressure in the elderly: does atrial fibrillation increase observer variability? BMJ. 1990;300:162–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kodani E. Is atrial fibrillation a suitable target for studies on blood pressure variability? Hypertens Res. 2024. https://doi.org/10.1038/s41440-024-01638-2.

  18. Anastas ZM, Jimerson E, Garolis S. Comparison of noninvasive blood pressure measurements in patients with atrial fibrillation. J Cardiovasc Nurs. 2008;23:516–9.

    Article  Google Scholar 

  19. Vázquez-Rodríguez B, Pita-Fernández S, Regueiro-López M, García-Pedreira D, Carro-Rodriguez MJ, Pérez-Rivas G, et al. Concordance between automatic and manual recording of blood pressure depending on the absence or presence of atrial fibrillation. Am J Hypertens. 2010;23:1089–94.

    Article  PubMed  Google Scholar 

  20. Šelmytė-Besusparė A, Barysienė J, Petrikonytė D, Aidietis A, Marinskis G, Laucevičius A. Auscultatory versus oscillometric blood pressure measurement in patients with atrial fibrillation and arterial hypertension. BMC Cardiovasc Disord. 2017;17:87.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stergiou GS, Kollias A, Destounis A, Tzamouranis D. Automated blood pressure measurement in atrial fibrillation: a systematic review and meta-analysis. J Hypertens. 2012;30:2074–82.

    Article  CAS  PubMed  Google Scholar 

  22. Clark CE, McDonagh STJ, McManus RJ. Accuracy of automated blood pressure measurements in the presence of atrial fibrillation: systematic review and meta-analysis. J Hum Hypertens. 2019;33:352–64.

    Article  PubMed  Google Scholar 

  23. Pagonas N, Schmidt S, Eysel J, Compton F, Hoffmann C, Seibert F, et al. Impact of atrial fibrillation on the accuracy of oscillometric blood pressure monitoring. Hypertension. 2013;62:579–84.

    Article  CAS  PubMed  Google Scholar 

  24. Doménech M, Berruezo A, Molina I, Mont L, Coca A. Nighttime ambulatory blood pressure is associated with atrial remodelling and neurohormonal activation in patients with idiopathic atrial fibrillation. Rev Esp Cardiol. 2013;66:458–63.

    Article  PubMed  Google Scholar 

  25. Lakhal K, Ehrmann S, Martin M, Faiz S, Réminiac F, Cinotti R, et al. Blood pressure monitoring during arrhythmia: agreement between automated brachial cuff and intra-arterial measurements. Br J Anaesth. 2015;115:540–9.

    Article  CAS  PubMed  Google Scholar 

  26. Xie F, Xu J, Xia L-L, Luo X, Jiang Z, Wu Y, et al. The impact of atrial fibrillation on accuracy of oscillometric blood pressure measurement: effect of ventricular rate. Hypertens Res. 2020;43:518–24.

    Article  PubMed  Google Scholar 

  27. Parati G, Omboni S, Palatini P, Rizzoni D, Bilo G, Valentini M, et al. Italian society of hypertension guidelines for conventional and automated blood pressure measurement in the office, at home and over 24h. High Blood Press Cardiovasc Prev. 2008;15:283–310.

    Article  PubMed  Google Scholar 

  28. Tong H-Y, Fan W-G, Su H. The usefulness of 24-hour blood pressure monitoring for the patients with atrial fibrillation: based on the variability of blood pressure parameters. Blood Press Monit. 2020;25:22–5.

    Article  PubMed  Google Scholar 

  29. Lundwall K, Kahan T, Omboni S. Blood pressure in atrial fibrillation and in sinus rhythm during ambulatory blood pressure monitoring: data from the TEMPLAR project. Hypertens Res. 2023. https://doi.org/10.1038/s41440-023-01473-x.

  30. Giantin V, Perissinotto E, Franchin A, Baccaglini K, Attanasio F, Maselli M, et al. Ambulatory blood pressure monitoring in elderly patients with chronic atrial fibrillation: is it absolutely contraindicated or a useful tool in clinical practice and research? Hypertens Res. 2013;36:889–94.

    Article  PubMed  Google Scholar 

  31. Pitzalis MV, Massari F, Forleo C, Fioretti A, Colombo R, Balducci C, et al. Respiratory systolic pressure variability during atrial fibrillation and sinus rhythm. Hypertension. 1999;34:1060–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mainardi L, Corino V, Belletti S, Terranova P, Lombardi F. Low frequency component in systolic arterial pressure variability in patients with persistent atrial fibrillation. Auton Neurosc. 2009;151:147–53.

    Article  Google Scholar 

  33. Dzeshka MS, Shahid F, Shantsila A, Lip GYH. Hypertension and atrial fibrillation: an intimate association of epidemiology, pathophysiology, and outcomes. Am J Hypertens. 2017;30:733–55.

    Article  CAS  PubMed  Google Scholar 

  34. Tsigkas G, Apostolos A, Despotopoulos S, Vasilagkos G, Kallergis E, Leventopoulos G, et al. Heart failure and atrial fibrillation: new concepts in pathophysiology, management, and future directions. Heart Fail Rev. 2021. https://doi.org/10.1007/s10741-021-10133-6.

  35. Zanutto BS, Valentinuzzi ME, Segura ET. Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius. Biomed Eng Online. 2010;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8:147–53.

    Article  CAS  PubMed  Google Scholar 

  37. Hesse C, Charkoudian N, Liu Z, Joyner MJ, Eisenach JH. Baroreflex sensitivity inversely correlates with ambulatory blood pressure in healthy normotensive humans. Hypertension. 2007;50:41–6.

    Article  CAS  PubMed  Google Scholar 

  38. Coleman TG, Guyton AC, Cowley AWJ, Bower JD, Norman RAJ, Manning RDJ. Feedback mechanisms of arterial pressure control. Contrib Nephrol. 1977;8:5–12.

    Article  CAS  PubMed  Google Scholar 

  39. MCCUBBIN JW, GREEN JH, PAGE IH. Baroceptor function in chronic renal hypertension. Circ Res. 1956;4:205–10.

    Article  CAS  PubMed  Google Scholar 

  40. Lohmeier TE. The sympathetic nervous system and long-term blood pressure regulation. Am J Hypertens. 2001;14:147S–154S.

    Article  CAS  PubMed  Google Scholar 

  41. Hunt BE, Fahy L, Farquhar WB, Taylor JA. Quantification of mechanical and neural components of vagal baroreflex in humans. Hypertension. 2001;37:1362–8.

    Article  CAS  PubMed  Google Scholar 

  42. Miyoshi M, Kondo H, Ishii Y, Shinohara T, Yonezu K, Harada T, et al. Baroreflex sensitivity in patients with atrial fibrillation. J Am Heart Assoc. 2020;9:e018019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kondo H, Shinohara T, Fukui A, Miyoshi M, Ishii Y, Otsubo T, et al. Possible role of baroreflex sensitivity in patients with paroxysmal atrial fibrillation. JACC Clin Electrophysiol. 2019;5:523–5.

    Article  PubMed  Google Scholar 

  44. Kiedrowicz RM, Wielusinski M, Zakrzewski M, Kazmierczak J. Does a vagal response indicate cardiac autonomic modulation and improve the therapeutic effect of pulmonary vein isolation in patients with paroxysmal atrial fibrillation? Insights from cryoballoon ablation. J Cardiovasc Dev Dis. 2022;9:142.

    PubMed  PubMed Central  Google Scholar 

  45. Sohns C, Marrouche NF. Atrial fibrillation and cardiac fibrosis. Eur Heart J. 2020;41:1123–31.

    Article  CAS  PubMed  Google Scholar 

  46. Chapleau MW, Cunningham JT, Sullivan MJ, Wachtel RE, Abboud FM. Structural versus functional modulation of the arterial baroreflex. Hypertension. 1995;26:341–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, et al. Blood pressure variability and organ damage in a general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension. 2002;39:710–4.

    Article  CAS  PubMed  Google Scholar 

  48. Roman MJ, Pickering TG, Schwartz JE, Pini R, Devereux RB. Relation of blood pressure variability to carotid atherosclerosis and carotid artery and left ventricular hypertrophy. Arterioscler Thromb Vasc Biol. 2001;21:1507–11.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Agnoletti D, Blacher J, Safar ME. Blood pressure variability in relation to autonomic nervous system dysregulation: the X-CELLENT study. Hypertens Res. 2012;35:399–403.

    Article  CAS  PubMed  Google Scholar 

  50. Linz D, Elliott AD, Hohl M, Malik V, Schotten U, Dobrev D, et al. Role of autonomic nervous system in atrial fibrillation. Int J Cardiol. 2019;287:181–8.

    Article  PubMed  Google Scholar 

  51. Leventopoulos G, Koros R, Travlos C, Perperis A, Chronopoulos P, Tsoni E, et al. Mechanisms of atrial fibrillation: how our knowledge affects clinical practice. Life. 2023;13. https://doi.org/10.3390/life13061260.

  52. Park J-S, Shin J-H, Park J-B, Choi D-J, Youn H-J, Park C-G, et al. Relationship between arterial stiffness and variability of home blood pressure monitoring. Medicine. 2020;99:e21227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cremer A, Lainé M, Papaioannou G, Yeim S, Gosse P. Increased arterial stiffness is an independent predictor of atrial fibrillation in hypertensive patients. J Hypertens. 2015;33:2150–5.

    Article  CAS  PubMed  Google Scholar 

  54. Tsiachris D, Tsioufis C, Dimitriadis K, Kokkinos P, Faselis C, Tousoulis D, et al. Relationship of ambulatory arterial stiffness index with blood pressure response to exercise in the early stages of hypertension. Blood Press Monit. 2010;15:132–8.

    Article  PubMed  Google Scholar 

  55. Kalaycioglu E, Gokdeniz T, Aykan AC, Hatem E, Gursoy OM, Cavusoglu G, et al. Ambulatory arterial stiffness index is associated with impaired left atrial mechanical functions in hypertensive diabetic patients: a speckle tracking study. Anatol J Cardiol. 2015;15:807–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimbo D, Shea S, McClelland RL, Viera AJ, Mann D, Newman J, et al. Associations of aortic distensibility and arterial elasticity with long-term visit-to-visit blood pressure variability: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Hypertens. 2013;26:896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maceira AM, Mohiaddin RH. Cardiovascular magnetic resonance in systemic hypertension. J Cardiovasc Magn Reson. 2012;14:28.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Oliver W, Matthews G, Ayers CR, Garg S, Gupta S, Neeland IJ, et al. Factors associated with left atrial remodeling in the general population. Circ Cardiovasc Imaging. 2017;10. https://doi.org/10.1161/CIRCIMAGING.116.005047.

  59. Cipollini F, Arcangeli E, Seghieri G. Left atrial dimension is related to blood pressure variability in newly diagnosed untreated hypertensive patients. Hypertens Res. 2016;39:583–7.

    Article  PubMed  Google Scholar 

  60. Tadic M, Cuspidi C, Ilic I, Suzic-Lazić J, Zivanovic V, Jozika L, et al. The relationship between blood pressure variability, obesity and left atrial phasic function in hypertensive population. Int J Cardiovasc Imaging. 2016;32:603–12.

    Article  PubMed  Google Scholar 

  61. Norioka N, Iwata S, Ito A, Tamura S, Kawai Y, Nonin S, et al. Greater nighttime blood pressure variability is associated with left atrial enlargement in atrial fibrillation patients with preserved ejection fraction. Hypertens Res. 2018;41:614–21.

    Article  PubMed  Google Scholar 

  62. Murat S, Velipasaoglu M, Murat B, Al A, Cicek S, Cavusoglu Y. Left atrial structure and function: association with blood pressure variability in pregnant women. Blood Press Monit. 2023;28:42–6.

    Article  PubMed  Google Scholar 

  63. Cioffi G, Faggiano P, Vizzardi E, Tarantini L, Cramariuc D, Gerdts E, et al. Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart. 2011;97:301–7.

    Article  PubMed  Google Scholar 

  64. Kudo H, Kai H, Kajimoto H, Koga M, Takayama N, Mori T, et al. Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation. Hypertension. 2009;54:832–8.

    Article  CAS  PubMed  Google Scholar 

  65. Jehn M, Appel LJ, Sacks FM, Miller ER 3rd. The effect of ambient temperature and barometric pressure on ambulatory blood pressure variability. Am J Hypertens. 2002;15:941–5.

    Article  PubMed  Google Scholar 

  66. Hintsala HE, Kiviniemi AM, Antikainen R, Mäntysaari M, Jokelainen J, Hassi J, et al. High home blood pressure variability associates with exaggerated blood pressure response to cold stress. Am J Hypertens. 2019;32:538–46.

    Article  CAS  PubMed  Google Scholar 

  67. Comelli I, Ferro J, Lippi G, Comelli D, Sartori E, Cervellin G. Incidence of acute-onset atrial fibrillation correlates with air temperature. Results of a nine-year survey. J Epidemiol Glob Health. 2014;4:151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Severino P, Mariani MV, Maraone A, Piro A, Ceccacci A, Tarsitani L, et al. Triggers for atrial fibrillation: the role of anxiety. Cardiol Res Pract. 2019;2019:1–5.

    Google Scholar 

  69. Dewland TA, Vittinghoff E, Harris TB, Magnani JW, Liu Y, Hsu F-C, et al. Inflammation as a mediator of the association between race and atrial fibrillation. JACC Clin Electrophysiol. 2015;1:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Takahashi N, Kume O, Wakisaka O, Fukunaga N, Teshima Y, Hara M, et al. Novel strategy to prevent atrial fibrosis and fibrillation. Circ J. 2012;76:2318–26.

    Article  CAS  PubMed  Google Scholar 

  71. Alqaqa A. Anxiety and atrial fibrillation: an interesting bidirectional association. Current Trends Cardiol. 2017;01. https://doi.org/10.35841/cardiology.1.1.15-18.

  72. Murck H, Held K, Ziegenbein M, Künzel H, Koch K, Steiger A. The renin-angiotensin-aldosterone system in patients with depression compared to controls – a sleep endocrine study. BMC Psychiatry. 2003;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Parati G, Bilo G, Kollias A, Pengo M, Ochoa JE, Castiglioni P, et al. Blood pressure variability: methodological aspects, clinical relevance and practical indications for management - a European Society of Hypertension position paper . J Hypertens. 2023;41:527–44.

    Article  CAS  PubMed  Google Scholar 

  74. Esler M, Eikelis N, Schlaich M, Lambert G, Alvarenga M, Kaye D, et al. Human sympathetic nerve biology. Ann N Y Acad Sci. 2008;1148:338–48.

    Article  CAS  PubMed  Google Scholar 

  75. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Farah VMA, Joaquim LF, Bernatova I, Morris M. Acute and chronic stress influence blood pressure variability in mice. Physiol Behav. 2004;83:135–42.

    Article  CAS  PubMed  Google Scholar 

  77. Lin Y-P, Fan C-H, Tsai K-Z, Lin K-H, Han C-L, Lin G-M. Psychological stress and long-term blood pressure variability of military young males: the cardiorespiratory fitness and hospitalization events in armed forces study. World J Cardiol. 2020;12:626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Proietti M, Romiti GF, Olshansky B, Lip GYH. Systolic blood pressure visit-to-visit variability and major adverse outcomes in atrial fibrillation: the AFFIRM study (Atrial Fibrillation Follow-Up Investigation of Rhythm Management). Hypertension. 2017;70:949–58.

    Article  CAS  PubMed  Google Scholar 

  79. Kim M, Cho MS, Nam G-B, Do U, Kim J, Choi K-J. Controlled level and variability of systolic blood pressure on the risk of thromboembolic events in atrial fibrillation and hypertension. Am J Cardiol. 2022;180:37–43.

    Article  PubMed  Google Scholar 

  80. Tsigkas G, Apostolos A, Despotopoulos S, Vasilagkos G, Papageorgiou A, Kallergis E, et al. Anticoagulation for atrial fibrillation in heart failure patients: balancing between Scylla and Charybdis. J Geriatr Cardiol. 2021;18:352–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kronish IM, Lynch AI, Oparil S, Whittle J, Davis BR, Simpson LM, et al. The association between antihypertensive medication nonadherence and visit-to-visit variability of blood pressure: findings from the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Hypertension. 2016;68:39–45.

    Article  CAS  PubMed  Google Scholar 

  82. Kodani E, Inoue H, Atarashi H, Okumura K, Yamashita T, Otsuka T, et al. Impact of blood pressure visit-to-visit variability on adverse events in patients with nonvalvular atrial fibrillation: subanalysis of the J-RHYTHM registry. J Am Heart Assoc. 2021;10:e018585.

    Article  PubMed  Google Scholar 

  83. Chichareon P, Methavigul K, Lip GYH, Krittayaphong R. Systolic blood pressure visit-to-visit variability and outcomes in Asian patients with atrial fibrillation. Hypertens Res. 2024. https://doi.org/10.1038/s41440-024-01592-z

    Article  PubMed  Google Scholar 

  84. Olbers J, Gille A, Ljungman P, Rosenqvist M, Östergren J, Witt N. High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm. Blood Press. 2018;27:249–55.

    Article  PubMed  Google Scholar 

  85. Webb AJS, Rothwell PM. Blood pressure variability and risk of new-onset atrial fibrillation: a systematic review of randomized trials of antihypertensive drugs. Stroke. 2010;41:2091–3.

    Article  CAS  PubMed  Google Scholar 

  86. Mehlum MH, Liestøl K, Wyller TB, Hua TA, Rostrup M, Berge E. Blood pressure variability in hypertensive patients with atrial fibrillation in the VALUE trial. Blood Press. 2019;28:77–83.

    Article  CAS  PubMed  Google Scholar 

  87. Wang C, Sun Y, Xin Q, Han X, Cai Z, Zhao M, et al. Visit-to-visit SBP variability and risk of atrial fibrillation in middle-aged and older populations. J Hypertens. 2022;40:2521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee S-R, Choi E-K, Han K-D, Lee S-H, Oh S. Effect of the variability of blood pressure, glucose level, total cholesterol level, and body mass index on the risk of atrial fibrillation in a healthy population. Heart Rhythm. 2020;17:12–19.

    Article  PubMed  Google Scholar 

  89. Kaze AD, Yuyun MF, Fonarow GC, Echouffo-Tcheugui JB. Blood pressure variability and risk of atrial fibrillation in adults with type 2 diabetes. JACC Adv. 2023;2. https://doi.org/10.1016/j.jacadv.2023.100382.

  90. Maezono A, Sakata S, Hata J, Oishi E, Furuta Y, Shibata M, et al. Day-to-day home blood pressure variability and risk of atrial fibrillation in a general Japanese population: the Hisayama Study. Eur J Prev Cardiol. 2024. https://doi.org/10.1093/eurjpc/zwae035.

  91. Mahfouz RA, El-Shetry M, Frere A, Safwat M. Blood pressure variability and atrial fibrillation in patients with acute ST segment elevation myocardial infarction: the relation with left atrial electromechanical delay - a 1-year follow-up study. Pulse. 2020;8:57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kamioka M, Kaneshiro T, Hijioka N, Amami K, Nodera M, Yamada S, et al. Visit-to-visit blood pressure variability predicts atrial fibrillation recurrence after pulmonary vein isolation in patients with hypertension and atrial fibrillation. Circ Rep. 2021;3:187–93.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sheikh AB, Sobotka PA, Garg I, Dunn JP, Minhas AMK, Shandhi MMH, et al. Blood pressure variability in clinical practice: past, present and the future. J Am Heart Assoc. 2023;12:e029297.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Di Cori A, Parollo M, Fiorentini F, Della Volpe S, Mazzocchetti L, Barletta V, et al. Feasibility and accuracy of noninvasive continuous arterial pressure monitoring during transcatheter atrial fibrillation ablation. J Clin Med. 2023;12. https://doi.org/10.3390/jcm12062388.

  95. Han M, Lee Y-R, Park T, Ihm S-H, Pyun WB, Burkard T, et al. Feasibility and measurement stability of smartwatch-based cuffless blood pressure monitoring: a real-world prospective observational study. Hypertens Res. 2023;46:922–31.

    Article  PubMed  Google Scholar 

  96. Huang P-H, Huang C-C, Lin S-J, Chen J-W. Prediction of atrial fibrillation in patients with hypertension: A comprehensive comparison of office and ambulatory blood pressure measurements. J Clin Hypertens. 2022;24:838–47.

    Article  CAS  Google Scholar 

  97. Omboni S, Kario K, Bakris G, Parati G. Effect of antihypertensive treatment on 24-h blood pressure variability. J Hypertens. 2018;36:720–33.

    Article  CAS  PubMed  Google Scholar 

  98. Visco V, Izzo C, Mancusi C, Rispoli A, Tedeschi M, Virtuoso N, et al. Artificial intelligence in hypertension management: an ace up your sleeve. J Cardiovasc Dev Dis. 2023;10. https://doi.org/10.3390/jcdd10020074.

  99. Veloudi P, Sharman JE. Methodological factors affecting quantification of blood pressure variability: a scoping review. J Hypertens. 2018;36:711–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KK, CT. Methodology: KK, AA, VP, DT, KD. Data Collection: KK, AA, KP, PP, DT. Writing—Original Draft Preparation: KK, AA, PP. Writing—Review and Editing: KK, KP, CT, VP, KD. Supervision: CT.

Corresponding author

Correspondence to Konstantinos Konstantinou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not required, as it is a literature-based review.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinou, K., Apostolos, A., Tsiachris, D. et al. Exploring the link between blood pressure variability and atrial fibrillation: current insights and future directions. J Hum Hypertens 38, 583–594 (2024). https://doi.org/10.1038/s41371-024-00936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-024-00936-z

Search

Quick links