Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular function in hypertension: does gender dimension matter?

Abstract

Blood pressure and vascular ageing trajectories differ between men and women. These differences develop due to sex-related factors, attributable to sex chromosomes or sex hormones, and due to gender-related factors, mainly related to different sociocultural behaviors. The present review summarizes the relevant facts regarding gender-related differences in vascular function in hypertension. Among sex-related factors, endogenous 17ß-estradiol plays a key role in protecting pre-menopausal women from vascular ageing. However, as vascular ageing (preceding and inducing hypertension) has a steeper increase in women than in men starting already from the third decade, it is likely that gender-related factors play a prominent role, especially in the young. Among gender-related factors, psychological stress (including that one related to gender-based violence and discrimination), depression, some psychological traits, but also low socioeconomic status, are more common in women than men, and their impact on vascular ageing is likely to be greater in women. Men, on the contrary, are more exposed to the vascular adverse consequences of alcohol consumption, as well as of social deprivation, while “toxic masculinity” traits may result in lower adherence to lifestyle and preventive strategies. Unhealthy diet habits are more prevalent in men and smoking is equally prevalent in the two sexes, but have a disproportional negative effect on women’s vascular health. In conclusion, given the major and complex role of gender-related factors in driving vascular alterations and blood pressure patterns, gender dimension should be systematically integrated into future research on vascular function and hypertension and to tailor cardiovascular prevention strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representation of trajectories of vascular ageing, blood pressure, and sex hormones throughout the lifespan in men and women.

Similar content being viewed by others

References

  1. Gerdts E, de Simone G. Hypertension in women: should there be a sex-specific threshold? Eur Cardiol. 2021;16:e38.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gerdts E, Sudano I, Brouwers S, Borghi C, Bruno RM, Ceconi C, et al. Sex differences in arterial hypertension. Eur Heart J. 2022;43:4777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wenger NK, Arnold A, Bairey Merz CN, Cooper-DeHoff RM, Ferdinand KC, Fleg JL, et al. Hypertension across a woman’s life cycle. J Am Coll Cardiol. 2018;71:1797–813.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25:1657–66.

    Article  CAS  PubMed  Google Scholar 

  5. Ostchega Y, Fryar CD, Nwankwo T, Nguyen DT. Hypertension prevalence among adults aged 18 and over: United States, 2017-2018. NCHS Data Brief. 2020;364:1–8.

  6. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, et al. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol. 2020;5:19–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Holder SM, Bruno RM, Shkredova DA, Dawson EA, Jones H, Hopkins ND, et al. Reference intervals for brachial artery flow-mediated dilation and the relation with cardiovascular risk factors. Hypertension. 2021;77:1469–80.

    Article  CAS  PubMed  Google Scholar 

  8. Bruno RM, Grassi G, Seravalle G, Savoia C, Rizzoni D, Virdis A. Age- and sex-specific reference values for media/Lumen ratio in small arteries and relationship with risk factors. Hypertension. 2018;71:1193–200.

    Article  CAS  PubMed  Google Scholar 

  9. Campos-Arias D, De Buyzere ML, Chirinos JA, Rietzschel ER, Segers P. Longitudinal changes of input impedance, pulse wave velocity, and wave reflection in a middle-aged population: the Asklepios study. Hypertension. 2021;77:1154–65.

    Article  CAS  PubMed  Google Scholar 

  10. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial stiffness and cardiovascular risk in hypertension. Circ Res. 2021;128:864–86.

    Article  CAS  PubMed  Google Scholar 

  11. Seeland U, Nemcsik J, Lønnebakken MT, Kublickiene K, Schluchter H, Park C, et al. Sex and gender aspects in vascular ageing—focus on epidemiology, pathophysiology, and outcomes. Heart Lung Circ. 2021;30:1637–46.

    Article  PubMed  Google Scholar 

  12. Laurent S, Agabiti-Rosei C, Bruno RM, Rizzoni D. Microcirculation and macrocirculation in hypertension: a dangerous cross-link? Hypertension. 2022;79:479–90.

    Article  CAS  PubMed  Google Scholar 

  13. DuPont JJ, Kenney RM, Patel AR, Jaffe IZ. Sex differences in mechanisms of arterial stiffness. Br J Pharm. 2019;176:4208–25.

    Article  CAS  Google Scholar 

  14. Ji H, Kwan AC, Chen MT, Ouyang D, Ebinger JE, Bell SP, et al. Sex differences in myocardial and vascular aging. Circ Res. 2022;130:566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Climie RE, Mayer CC, Bruno RM, Hametner B. Addressing the unmet needs of measuring vascular ageing in clinical practice–European COoperation in Science and Technology Action VascAgeNet. Artery Res. 2020;26:71–5.

    Article  Google Scholar 

  16. Kublickiene K, Svedas E, Landgren BM, Crisby M, Nahar N, Nisell H, et al. Small artery endothelial dysfunction in postmenopausal women: in vitro function, morphology, and modification by estrogen and selective estrogen receptor modulators. J Clin Endocrinol Metab. 2005;90:6113–22.

    Article  CAS  PubMed  Google Scholar 

  17. Kublickiene K, Fu XD, Svedas E, Landgren BM, Genazzani AR, Simoncini T. Effects in postmenopausal women of estradiol and medroxyprogesterone alone and combined on resistance artery function and endothelial morphology and movement. J Clin Endocrinol Metab. 2008;93:1874–83.

    Article  CAS  PubMed  Google Scholar 

  18. Lønnebakken MT, Izzo R, Mancusi C, Losi MA, Stabile E, Rozza F, et al. Aortic root dimension and arterial stiffness in arterial hypertension: the Campania Salute Network. J Hypertens. 2016;34:1109–14.

    Article  PubMed  Google Scholar 

  19. Barton M, Meyer MR. Postmenopausal hypertension: mechanisms and therapy. Hypertension. 2009;54:11–8.

    Article  CAS  PubMed  Google Scholar 

  20. Samargandy S, Matthews KA, Brooks MM, Barinas-Mitchell E, Magnani JW, Thurston RC, et al. Trajectories of blood pressure in midlife women: does menopause matter? Circ Res. 2022;130:312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maas A, Rosano G, Cifkova R, Chieffo A, van Dijken D, Hamoda H, et al. Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from European cardiologists, gynaecologists, and endocrinologists. Eur Heart J. 2021;42:967–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casiglia E, Tikhonoff V, Caffi S, Bascelli A, Schiavon L, Guidotti F, et al. Menopause does not affect blood pressure and risk profile, and menopausal women do not become similar to men. J Hypertens. 2008;26:1983–92.

    Article  CAS  PubMed  Google Scholar 

  23. Cifkova R, Pitha J, Lejskova M, Lanska V, Zecova S. Blood pressure around the menopause: a population study. J Hypertens. 2008;26:1976–82.

    Article  CAS  PubMed  Google Scholar 

  24. Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016;68:1447–58.

    Article  PubMed  Google Scholar 

  25. Khashan AS, Evans M, Kublickas M, McCarthy FP, Kenny LC, Stenvinkel P, et al. Preeclampsia and risk of end stage kidney disease: a Swedish nationwide cohort study. PLoS Med. 2019;16:e1002875.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Yao J, Wang W, Zhang D. Association between duration of oral contraceptive use and risk of hypertension: a meta-analysis. J Clin Hypertens. 2017;19:1032–41.

    Article  CAS  Google Scholar 

  27. Saz-Lara A, Bruno RM, Cavero-Redondo I, Álvarez-Bueno C, Notario-Pacheco B, Martínez-Vizcaíno V. Association between arterial stiffness and blood pressure progression with incident hypertension: a systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:798934.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozàkovà M, La Canna G, et al. Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients. J Hypertens. 2003;21:625–31.

    Article  CAS  PubMed  Google Scholar 

  29. Kringeland E, Tell GS, Midtbø H, Haugsgjerd TR, Igland J, Gerdts E. Factors associated with increase in blood pressure and incident hypertension in early midlife: the Hordaland Health Study. Blood Press. 2020;29:267–75.

    Article  CAS  PubMed  Google Scholar 

  30. Bruno RM, Nilsson PM, Engström G, Wadström BN, Empana JP, Boutouyrie P, et al. Early and supernormal vascular aging: clinical characteristics and association with incident cardiovascular events. Hypertension. 2020;76:1616–24.

    Article  CAS  PubMed  Google Scholar 

  31. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation. 2018;138:198–205.

    Article  PubMed  Google Scholar 

  32. Weber T, Wassertheurer S, Hametner B, Moebus S, Pundt N, Mahabadi AA, et al. Cross-sectional analysis of pulsatile hemodynamics across the adult life span: reference values, healthy and early vascular aging: the Heinz Nixdorf Recall and the MultiGeneration Study. J Hypertens. 2019;37:2404–13.

    Article  CAS  PubMed  Google Scholar 

  33. Seeland U, Demuth I, Regitz-Zagrosek V, Steinhagen-Thiessen E, Konig M. Sex differences in arterial wave reflection and the role of exogenous and endogenous sex hormones: results of the Berlin Aging Study II. J Hypertens. 2020;38:1040–6.

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs DR Jr, Woo JG, Sinaiko AR, Daniels SR, Ikonen J, Juonala M, et al. Childhood cardiovascular risk factors and adult cardiovascular events. N Engl J Med. 2022;386:1877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fong TS, Urbina EM, Howden EJ, Wallace I, Park C, Gall S, et al. Youth Vascular Consortium (YVC) Protocol: establishing reference intervals for vascular ageing in children, adolescents and young adults. Heart Lung Circ. 2021;30:1710–5.

    Article  PubMed  Google Scholar 

  36. Climie RE, Park C, Avolio A, Mynard JP, Kruger R, Bruno RM. Vascular ageing in youth: a call to action. Heart Lung Circ. 2021;30:1613–26.

    Article  PubMed  Google Scholar 

  37. Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens. 1991;9:77–84.

    Article  CAS  PubMed  Google Scholar 

  38. Nardin C, Maki-Petaja KM, Miles KL, Yasmin, McDonnell BJ, Cockcroft JR, et al. Cardiovascular phenotype of elevated blood pressure differs markedly between young males and females: the Enigma Study. Hypertension. 2018;72:1277–84.

    Article  CAS  PubMed  Google Scholar 

  39. Haley JE, Woodly SA, Daniels SR, Falkner B, Ferguson MA, Flynn JT, et al. Association of blood pressure-related increase in vascular stiffness on other measures of target organ damage in youth. Hypertension. 2022;79:2042–50.

    Article  CAS  PubMed  Google Scholar 

  40. Koskinen J, Magnussen CG, Viikari JS, Kahonen M, Laitinen T, Hutri-Kahonen N, et al. Effect of age, gender and cardiovascular risk factors on carotid distensibility during 6-year follow-up. The cardiovascular risk in Young Finns study. Atherosclerosis. 2012;224:474–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mizrak I, Asserhoej LL, Lund MAV, Greisen G, Clausen TD, Main KM, et al. Aortic distensibility is equal in prepubertal girls and boys and increases with puberty in girls. Am J Physiol Heart Circ Physiol. 2022;323:H312–21.

    Article  CAS  PubMed  Google Scholar 

  42. Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, et al. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:77.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56:217–24.

    Article  CAS  PubMed  Google Scholar 

  44. Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.

    Article  PubMed  Google Scholar 

  45. Dymara-Konopka W, Laskowska M. The role of nitric oxide, ADMA, and homocysteine in the etiopathogenesis of preeclampsia-review. Int J Mol Sci. 2019;20:2757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McDonald SD, Malinowski A, Zhou Q, Yusuf S, Devereaux PJ. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J. 2008;156:918–30.

    Article  PubMed  Google Scholar 

  47. Staessen JA, van der Heijden-Spek JJ, Safar ME, Den Hond E, Gasowski J, Fagard RH, et al. Menopause and the characteristics of the large arteries in a population study. J Hum Hypertens. 2001;15:511–8.

    Article  CAS  PubMed  Google Scholar 

  48. Virdis A, Ghiadoni L, Sudano I, Buralli S, Salvetti G, Taddei S, et al. Endothelial function in hypertension: role of gender. J Hypertens Suppl. 2002;20:S11–6.

    CAS  PubMed  Google Scholar 

  49. Esposito R, Izzo R, Galderisi M, De Marco M, Stabile E, Esposito G, et al. Identification of phenotypes at risk of transition from diastolic hypertension to isolated systolic hypertension. J Hum Hypertens. 2016;30:392–6.

    Article  CAS  PubMed  Google Scholar 

  50. Mancusi C, Gerdts E, de Simone G, Midtbo H, Lonnebakken MT, Boman K, et al. Higher pulse pressure/stroke volume index is associated with impaired outcome in hypertensive patients with left ventricular hypertrophy the LIFE study. Blood Press. 2017;26:150–5.

    Article  PubMed  Google Scholar 

  51. Kyada P, Jadhav K, Biswas TK, Mehta V, Zaman BS. End organ damage in hypertensive geriatric age group: a cross sectional study. J Med Res Innov. 2017;1:10–16.

    Article  Google Scholar 

  52. Muiesan ML, Paini A, Aggiusti C, Bertacchini F, Rosei CA, Salvetti M. Hypertension and organ damage in women. High Blood Press Cardiovasc Prev. 2018;25:245–52.

    Article  PubMed  Google Scholar 

  53. Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, et al. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol. 2018;258:257–61.

    Article  PubMed  Google Scholar 

  54. Palatini P, Mos L, Santonastaso M, Saladini F, Benetti E, Mormino P, et al. Premenopausal women have increased risk of hypertensive target organ damage compared with men of similar age. J Womens Health. 2011;20:1175–81.

    Article  Google Scholar 

  55. Seeland U, Brecht A, Nauman AT, Oertelt-Prigione S, Ruecke M, Knebel F, et al. Prevalence of arterial stiffness and the risk of myocardial diastolic dysfunction in women. Biosci Rep. 2016;36:e00400.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Climie RE, Van Sloten TT, Bruno RM, Taddei S, Empana JP, Stehouwer CDA, et al. Macrovasculature and microvasculature at the crossroads between type 2 diabetes mellitus and hypertension. Hypertension. 2019;73:1138–49.

    Article  CAS  PubMed  Google Scholar 

  57. Muiesan ML, Ambrosioni E, Costa FV, Leonetti G, Pessina AC, Salvetti M, et al. Sex differences in hypertension-related renal and cardiovascular diseases in Italy: the I-DEMAND study. J Hypertens. 2012;30:2378–86.

    Article  CAS  PubMed  Google Scholar 

  58. van Sloten TT, Sedaghat S, Laurent S, London GM, Pannier B, Ikram MA, et al. Carotid stiffness is associated with incident stroke: a systematic review and individual participant data meta-analysis. J Am Coll Cardiol. 2015;66:2116–25.

    Article  PubMed  Google Scholar 

  59. Tsao CW, Seshadri S, Beiser AS, Westwood AJ, Decarli C, Au R, et al. Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology. 2013;81:984–91.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Picano E, Bruno RM, Ferrari GF, Bonuccelli U. Cognitive impairment and cardiovascular disease: so near, so far. Int J Cardiol. 2014;175:21–9.

    Article  PubMed  Google Scholar 

  61. Blanken AE, Nation DA. Does gender influence the relationship between high blood pressure and dementia? Highlighting areas for further investigation. J Alzheimers Dis. 2020;78:23–48.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9:360–70.

    Article  CAS  PubMed  Google Scholar 

  63. Liu MY, Li N, Li WA, Khan H. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol Res. 2017;39:573–80.

    Article  PubMed  Google Scholar 

  64. Merz CNB, Dwyer J, Nordstrom CK, Walton KG, Salerno JW, Schneider RH. Psychosocial stress and cardiovascular disease: pathophysiological links. Behav Med. 2002;27:141–7.

    Article  Google Scholar 

  65. Gu H-F, Tang C-K, Yang Y-Z. Psychological stress, immune response, and atherosclerosis. Atherosclerosis. 2012;223:69–77.

    Article  CAS  PubMed  Google Scholar 

  66. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.

    Article  PubMed  Google Scholar 

  67. Kajantie E, Phillips DI. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31:151–78.

    Article  CAS  PubMed  Google Scholar 

  68. Joyner MJ, Barnes JN, Hart EC, Wallin BG, Charkoudian N. Neural control of the circulation: how sex and age differences interact in humans. Compr Physiol. 2015;5:193–215.

    PubMed  PubMed Central  Google Scholar 

  69. Logan JG, Teachman BA, Liu X, Farber CR, Liu Z, Annex BH. Acute psychological stress, autonomic function, and arterial stiffness among women. Int J Psychophysiol. 2020;155:219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Naegele M, Flammer AJ, Enseleit F, Roas S, Frank M, Hirt A, et al. Endothelial function and sympathetic nervous system activity in patients with Takotsubo syndrome. Int J Cardiol. 2016;224:226–30.

    Article  CAS  PubMed  Google Scholar 

  71. Stewart AL, Kathawalla UK, Wolfe AG, Everson-Rose SA. Women’s heart health at mid-life: what is the role of psychosocial stress? Womens Midlife Health. 2018;4:11.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lawn RB, Nishimi KM, Sumner JA, Chibnik LB, Roberts AL, Kubzansky LD, et al. Sexual violence and risk of hypertension in women in the nurses’ health study II: a 7-year prospective analysis. J Am Heart Assoc. 2022;11:e023015.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nguyen KA, Abrahams N, Jewkes R, Mhlongo S, Seedat S, Myers B, et al. The associations of intimate partner violence and non-partner sexual violence with hypertension in South African women. Int J Environ Res Public Health. 2022;19:4026.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thurston RC, Chang Y, Matthews KA, von Känel R, Koenen K. Association of sexual harassment and sexual assault with midlife women’s mental and physical health. JAMA Intern Med. 2019;179:48–53.

    Article  PubMed  Google Scholar 

  75. Walczewska J, Rutkowski K, Wizner B, Cwynar M, Grodzicki T. Stiffness of large arteries and cardiovascular risk in patients with post-traumatic stress disorder. Eur Heart J. 2011;32:730–6.

    Article  PubMed  Google Scholar 

  76. Weissman MM, Bland R, Joyce PR, Newman S, Wells JE, Wittchen HU. Sex differences in rates of depression: cross-national perspectives. J Affect Disord. 1993;29:77–84.

    Article  CAS  PubMed  Google Scholar 

  77. Maji S. Society and ‘good woman’: a critical review of gender difference in depression. Int J Soc Psychiatry. 2018;64:396–405.

    Article  PubMed  Google Scholar 

  78. Pizzi C, Manzoli L, Mancini S, Bedetti G, Fontana F, Costa GM. Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors. Atherosclerosis. 2010;212:292–8.

    Article  CAS  PubMed  Google Scholar 

  79. Peng L, Bi S, Liu X, Long T, Zhao Y, Li F, et al. Association between depressive symptoms and arterial stiffness: a cross-sectional study in the general Chinese population. BMJ Open. 2020;10:e033408.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Onete V, Henry RM, Sep SJS, Koster A, van der Kallen CJ, Dagnelie PC, et al. Arterial stiffness is associated with depression in middle-aged men—the Maastricht Study. J Psychiatry Neurosci. 2018;43:111–9.

    Article  PubMed  Google Scholar 

  81. Williams JE, Din-Dzietham R, Szklo M. Trait anger and arterial stiffness: results from the Atherosclerosis Risk in Communities (ARIC) study. Prev Cardiol. 2006;9:14–20.

    Article  PubMed  Google Scholar 

  82. Bouchard TJ Jr. Genes, environment, and personality. Science. 1994;264:1700–1.

    Article  PubMed  Google Scholar 

  83. Vázquez GH, Tondo L, Mazzarini L, Gonda X. Affective temperaments in general population: a review and combined analysis from national studies. J Affect Disord. 2012;139:18–22.

    Article  PubMed  Google Scholar 

  84. Rihmer Z, Akiskal KK, Rihmer A, Akiskal HS. Current research on affective temperaments. Curr Opin Psychiatry. 2010;23:12–8.

    Article  PubMed  Google Scholar 

  85. Vecsey-Nagy M, Szilveszter B, Kolossváry M, Boussoussou M, Vattay B, Gonda X, et al. The association between accelerated vascular aging and cyclothymic affective temperament in women. J Psychosom Res. 2021;145:110423.

    Article  PubMed  Google Scholar 

  86. László A, Tabák Á, Kőrösi B, Eörsi D, Torzsa P, Cseprekál O, et al. Association of affective temperaments with blood pressure and arterial stiffness in hypertensive patients: a cross-sectional study. BMC Cardiovasc Disord. 2016;16:158.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Leng B, Jin Y, Li G, Chen L, Jin N. Socioeconomic status and hypertension: a meta-analysis. J Hypertens. 2015;33:221–9.

    Article  CAS  PubMed  Google Scholar 

  88. Equality EIfG. Poverty, gender and intersecting inequalities in the EU: review of the implementation of Area A, Women and Poverty of the Beijing Platform for Action: report. 2016.

  89. Neufcourt L, Deguen S, Bayat S, Zins M, Grimaud O. Gender differences in the association between socioeconomic status and hypertension in France: a cross-sectional analysis of the CONSTANCES cohort. PLoS ONE. 2020;15:e0231878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baek TH, Lee HY, Lim NK, Park HY. Gender differences in the association between socioeconomic status and hypertension incidence: the Korean Genome and Epidemiology Study (KoGES). BMC Public Health. 2015;15:852.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Defianna SR, Santosa A, Probandari A, Dewi FST. Gender differences in prevalence and risk factors for hypertension among adult populations: a cross-sectional study in Indonesia. Int J Environ Res Public Health. 2021;18:6259.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bridger Staatz C, Kelly Y, Lacey RE, Blodgett JM, George A, Arnot M, et al. Life course socioeconomic position and body composition in adulthood: a systematic review and narrative synthesis. Int J Obes. 2021;45:2300–15.

    Article  Google Scholar 

  93. Nilsson PM. Adverse social factors can predict hypertension–but how? Eur Heart J. 2009;30:1305–6.

    Article  PubMed  Google Scholar 

  94. O’Neil A, Scovelle AJ, Milner AJ, Kavanagh A. Gender/sex as a social determinant of cardiovascular risk. Circulation. 2018;137:854–64.

    Article  PubMed  Google Scholar 

  95. Bromfield SG, Sullivan S, Saelee R, Elon L, Lima B, Young A, et al. Race and gender differences in the association between experiences of everyday discrimination and arterial stiffness among patients with coronary heart disease. Ann Behav Med. 2020;54:761–70.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Harris KM, Halpern CT, Whitsel EA, Hussey JM, Killeya-Jones LA, Tabor J, et al. Cohort profile: the national longitudinal study of adolescent to adult health (add health). Int J Epidemiol. 2019;48:1415–k.

  97. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303:2043–50.

    Article  CAS  PubMed  Google Scholar 

  98. Courtenay WH. Constructions of masculinity and their influence on men’s well-being: a theory of gender and health. Soc Sci Med. 2000;50:1385–401.

    Article  CAS  PubMed  Google Scholar 

  99. Jeffries M, Grogan S. ‘Oh, I’m just, you know, a little bit weak because I’m going to the doctor’s’: young men’s talk of self-referral to primary healthcare services. Psychol Health. 2012;27:898–915.

    Article  PubMed  Google Scholar 

  100. Noone JH, Stephens C. Men, masculine identities, and health care utilisation. Sociol Health Illn. 2008;30:711–25.

    Article  PubMed  Google Scholar 

  101. Bruno RM, Pépin LJ, Empana JP, Rui-Yi Y, Vercamer V, Jouhaud P, et al. Home monitoring of arterial pulse wave velocity during COVID-19 total or partial lockdown using connected smart scales. Eur Heart J Digit Health. 2022;3:362–72.

  102. Climie RE, Boutouyrie P, Perier MC, Chaussade E, Plichart M, Offredo L, et al. Association between occupational, sport, and leisure related physical activity and baroreflex sensitivity: the Paris Prospective Study III. Hypertension. 2019;74:1476–83.

    Article  CAS  PubMed  Google Scholar 

  103. Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, et al. Life’s essential 8: updating and enhancing the American Heart Association’s Construct of Cardiovascular Health: a presidential advisory from the American Heart Association. Circulation. 2022;146:e18–43.

    Article  PubMed  Google Scholar 

  104. Kocevska D, Lysen TS, Dotinga A, Koopman-Verhoeff ME, Luijk M, Antypa N, et al. Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: a systematic review and meta-analysis. Nat Hum Behav. 2021;5:113–22.

    Article  PubMed  Google Scholar 

  105. Sauvet F, Leftheriotis G, Gomez-Merino D, Langrume C, Drogou C, Van Beers P, et al. Effect of acute sleep deprivation on vascular function in healthy subjects. J Appl Physiol. 2010;108:68–75.

    Article  PubMed  Google Scholar 

  106. Sunbul M, Kanar BG, Durmus E, Kivrak T, Sari I. Acute sleep deprivation is associated with increased arterial stiffness in healthy young adults. Sleep Breath. 2014;18:215–20.

    Article  PubMed  Google Scholar 

  107. Cappuccio FP, Stranges S, Kandala N-B, Miller MA, Taggart FM, Kumari M, et al. Gender-specific associations of short sleep duration with prevalent and incident hypertension: the Whitehall II Study. Hypertension. 2007;50:693–700.

    Article  CAS  PubMed  Google Scholar 

  108. Bruno RM, Palagini L, Gemignani A, Virdis A, Di Giulio A, Ghiadoni L, et al. Poor sleep quality and resistant hypertension. Sleep Med. 2013;14:1157–63.

    Article  PubMed  Google Scholar 

  109. Zhou Y, Yang R, Li C, Tao M. Sleep disorder, an independent risk associated with arterial stiffness in menopause. Sci Rep. 2017;7:1904.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Krishnan V, Collop NA. Gender differences in sleep disorders. Curr Opin Pulm Med. 2006;12:383–9.

    Article  PubMed  Google Scholar 

  111. Doonan RJ, Scheffler P, Lalli M, Kimoff RJ, Petridou ET, Daskalopoulos ME, et al. Increased arterial stiffness in obstructive sleep apnea: a systematic review. Hypertens Res. 2011;34:23–32.

    Article  PubMed  Google Scholar 

  112. Bonsignore MR, Saaresranta T, Riha RL. Sex differences in obstructive sleep apnoea. Eur Respir Rev. 2019;28:190030.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bauters FA, Hertegonne KB, Pevernagie D, De Buyzere ML, Chirinos JA, Rietzschel ER. Sex differences in the association between arterial hypertension, blood pressure, and sleep apnea in the general population. J Clin Sleep Med. 2021;17:1057–66.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Saeed S, Romarheim A, Mancia G, Saxvig IW, Gulati S, Lehmann S, et al. Characteristics of hypertension and arterial stiffness in obstructive sleep apnea: a Scandinavian experience from a prospective study of 6408 normotensive and hypertensive patients. J Clin Hypertens. 2022;24:385–94.

    Article  Google Scholar 

  115. Jenner R, Fatureto-Borges F, Costa-Hong V, Lopes HF, Teixeira SH, Marum E, et al. Association of obstructive sleep apnea with arterial stiffness and nondipping blood pressure in patients with hypertension. J Clin Hypertens. 2017;19:910–8.

    Article  CAS  Google Scholar 

  116. Ceylan-Isik AF, McBride SM, Ren J. Sex difference in alcoholism: who is at a greater risk for development of alcoholic complication? Life Sci. 2010;87:133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Beilin LJ, Puddey IB. Alcohol and hypertension: an update. Hypertension. 2006;47:1035–8.

    Article  CAS  PubMed  Google Scholar 

  118. Briasoulis A, Agarwal V, Messerli FH. Alcohol consumption and the risk of hypertension in men and women: a systematic review and meta-analysis. J Clin Hypertens. 2012;14:792–8.

    Article  Google Scholar 

  119. Hwang CL, Muchira J, Hibner BA, Phillips SA, Piano MR. Alcohol consumption: a new risk factor for arterial stiffness? Cardiovasc Toxicol. 2022;22:236–45.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Le-Ha C, Beilin LJ, Burrows S, Huang RC, Oddy WH, Hands B, et al. Oral contraceptive use in girls and alcohol consumption in boys are associated with increased blood pressure in late adolescence. Eur J Prev Cardiol. 2013;20:947–55.

    Article  PubMed  Google Scholar 

  121. Sasaki S, Yoshioka E, Saijo Y, Kita T, Okada E, Tamakoshi A, et al. Relation between alcohol consumption and arterial stiffness: a cross-sectional study of middle-aged Japanese women and men. Alcohol. 2013;47:643–9.

    Article  CAS  PubMed  Google Scholar 

  122. Sierksma A, Lebrun CE, van der Schouw YT, Grobbee DE, Lamberts SW, Hendriks HF, et al. Alcohol consumption in relation to aortic stiffness and aortic wave reflections: a cross-sectional study in healthy postmenopausal women. Arterioscler Thromb Vasc Biol. 2004;24:342–8.

    Article  CAS  PubMed  Google Scholar 

  123. Thomasson HR. Gender differences in alcohol metabolism. Physiological responses to ethanol. Recent Dev Alcohol. 1995;12:163–79.

    CAS  PubMed  Google Scholar 

  124. Wilsnack RW, Wilsnack SC, Kristjanson AF, Vogeltanz-Holm ND, Gmel G. Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction. 2009;104:1487–500.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Everett B, Zajacova A. Gender differences in hypertension and hypertension awareness among young adults. Biodemography Soc Biol. 2015;61:1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bruno RM, Pucci G, Rosticci M, Guarino L, Guglielmo C, Agabiti Rosei C, et al. Association between lifestyle and systemic arterial hypertension in young adults: a national, survey-based, cross-sectional study. High Blood Press Cardiovasc Prev. 2016;23:31–40.

    Article  CAS  PubMed  Google Scholar 

  127. Cifkova R, Pitha J, Krajcoviechova A, Kralikova E. Is the impact of conventional risk factors the same in men and women? Plea for a more gender-specific approach. Int J Cardiol. 2019;286:214–9.

    Article  PubMed  Google Scholar 

  128. Mozos I, Maidana JP, Stoian D, Stehlik M. Gender differences of arterial stiffness and arterial age in smokers. Int J Environ Res Public Health. 2017;14:565.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Puymirat E, Simon T, Steg PG, Schiele F, Guéret P, Blanchard D, et al. Association of changes in clinical characteristics and management with improvement in survival among patients with ST-elevation myocardial infarction. JAMA. 2012;308:998–1006.

    Article  CAS  PubMed  Google Scholar 

  130. Hiscock R, Bauld L, Amos A, Fidler JA, Munafò M. Socioeconomic status and smoking: a review. Ann N Y Acad Sci. 2012;1248:107–23.

    Article  PubMed  Google Scholar 

  131. Bender SB, Castorena-Gonzalez JA, Garro M, Reyes-Aldasoro CC, Sowers JR, DeMarco VG, et al. Regional variation in arterial stiffening and dysfunction in Western diet-induced obesity. Am J Physiol Heart Circ Physiol. 2015;309:H574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. DeMarco VG, Habibi J, Jia G, Aroor AR, Ramirez-Perez FI, Martinez-Lemus LA, et al. Low-dose mineralocorticoid receptor blockade prevents western diet-induced arterial stiffening in female mice. Hypertension. 2015;66:99–107.

    Article  CAS  PubMed  Google Scholar 

  133. García-Bailo B, Brenner DR, Nielsen D, Lee HJ, Domanski D, Kuzyk M, et al. Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. Am J Clin Nutr. 2012;95:352–61.

    Article  PubMed  Google Scholar 

  134. Oude Griep LM, Wang H, Chan Q. Empirically-derived dietary patterns, diet quality scores, and markers of inflammation and endothelial dysfunction. Curr Nutr Rep. 2013;2:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maddock J, Ziauddeen N, Ambrosini GL, Wong A, Hardy R, Ray S. Adherence to a dietary approaches to stop hypertension (DASH)-type diet over the life course and associated vascular function: a study based on the MRC 1946 British birth cohort. Br J Nutr. 2018;119:581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jiang J, Liu M, Troy LM, Bangalore S, Hayes RB, Parekh N. Concordance with DASH diet and blood pressure change: results from the Framingham Offspring Study (1991-2008). J Hypertens. 2015;33:2223–30.

    Article  CAS  PubMed  Google Scholar 

  137. Kim Y, Lu S, Ho JE, Hwang SJ, Yao C, Huan T, et al. Proteins as mediators of the association between diet quality and incident cardiovascular disease and all-cause mortality: the Framingham Heart Study. J Am Heart Assoc. 2021;10:e021245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sauder KA, Proctor DN, Chow M, Troy LM, Wang N, Vita JA, et al. Endothelial function, arterial stiffness and adherence to the 2010 Dietary Guidelines for Americans: a cross-sectional analysis. Br J Nutr. 2015;113:1773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Woo J, Yu BWM, Chan RSM, Leung J. Influence of dietary patterns and inflammatory markers on atherosclerosis using ankle brachial index as a surrogate. J Nutr Health Aging. 2018;22:619–26.

    Article  CAS  PubMed  Google Scholar 

  140. Haring B, Wang W, Fretts A, Shimbo D, Lee ET, Howard BV, et al. Red meat consumption and cardiovascular target organ damage (from the Strong Heart Study). J Hypertens. 2017;35:1794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Steffen LM, Kroenke CH, Yu X, Pereira MA, Slattery ML, Van Horn L, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr. 2005;82:1169–77.

    Article  CAS  PubMed  Google Scholar 

  142. Wilsgaard T, Schirmer H, Arnesen E. Impact of body weight on blood pressure with a focus on sex differences: the Tromso Study, 1986-1995. Arch Intern Med. 2000;160:2847–53.

    Article  CAS  PubMed  Google Scholar 

  143. Protogerou AD, Blacher J, Aslangul E, Le Jeunne C, Lekakis J, Mavrikakis M, et al. Gender influence on metabolic syndrome’s effects on arterial stiffness and pressure wave reflections in treated hypertensive subjects. Atherosclerosis. 2007;193:151–8.

    Article  CAS  PubMed  Google Scholar 

  144. Mertens IL, Van Gaal LF. Overweight, obesity, and blood pressure: the effects of modest weight reduction. Obes Res. 2000;8:270–8.

    Article  CAS  PubMed  Google Scholar 

  145. Raitakari M, Ilvonen T, Ahotupa M, Lehtimäki T, Harmoinen A, Suominen P, et al. Weight reduction with very-low-caloric diet and endothelial function in overweight adults: role of plasma glucose. Arterioscler Thromb Vasc Biol. 2004;24:124–8.

    Article  CAS  PubMed  Google Scholar 

  146. Gay HC, Rao SG, Vaccarino V, Ali MK. Effects of different dietary interventions on blood pressure: systematic review and Meta-analysis of randomized controlled trials. Hypertension. 2016;67:733–9.

    Article  CAS  PubMed  Google Scholar 

  147. Cappuccio FP, Markandu ND, Carney C, Sagnella GA, MacGregor GA. Double-blind randomised trial of modest salt restriction in older people. Lancet. 1997;350:850–4.

    Article  CAS  PubMed  Google Scholar 

  148. Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension. 2004;44:35–41.

    Article  CAS  PubMed  Google Scholar 

  149. Moschny A, Platen P, Klaassen-Mielke R, Trampisch U, Hinrichs T. Physical activity patterns in older men and women in Germany: a cross-sectional study. BMC Public Health. 2011;11:559.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS Jr., et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282:1547–53.

    Article  CAS  PubMed  Google Scholar 

  151. Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ. 2014;38:296–307.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Seals DR, Stevenson ET, Jones PP, DeSouza CA, Tanaka H. Lack of age-associated elevations in 24-h systolic and pulse pressures in women who exercise regularly. Am J Physiol. 1999;277:H947–55.

    CAS  PubMed  Google Scholar 

  153. Matsubara T, Miyaki A, Akazawa N, Choi Y, Ra SG, Tanahashi K, et al. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. Am J Physiol Heart Circ Physiol. 2014;306:H348–55.

    Article  CAS  PubMed  Google Scholar 

  154. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116:682–92.

    Article  PubMed  Google Scholar 

  155. Vaitkevicius PV, Fleg JL, Engel JH, O’Connor FC, Wright JG, Lakatta LE, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88:1456–62.

    Article  CAS  PubMed  Google Scholar 

  156. Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18:127–32.

    Article  CAS  PubMed  Google Scholar 

  157. Moreau KL, Donato AJ, Seals DR, DeSouza CA, Tanaka H. Regular exercise, hormone replacement therapy and the age-related decline in carotid arterial compliance in healthy women. Cardiovasc Res. 2003;57:861–8.

    Article  CAS  PubMed  Google Scholar 

  158. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270–5.

    Article  CAS  PubMed  Google Scholar 

  159. Collier SR, Kanaley JA, Carhart R Jr, Frechette V, Tobin MM, Hall AK, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22:678–86.

    Article  CAS  PubMed  Google Scholar 

  160. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975–91.

    Google Scholar 

  161. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  PubMed  Google Scholar 

  162. Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, et al. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation. 2000;101:828–33.

    Article  CAS  PubMed  Google Scholar 

  163. Collier SR, Frechette V, Sandberg K, Schafer P, Ji H, Smulyan H, et al. Sex differences in resting hemodynamics and arterial stiffness following 4 weeks of resistance versus aerobic exercise training in individuals with pre-hypertension to stage 1 hypertension. Biol Sex Differ. 2011;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Miyachi M, Donato AJ, Yamamoto K, Takahashi K, Gates PE, Moreau KL, et al. Greater age-related reductions in central arterial compliance in resistance-trained men. Hypertension. 2003;41:130–5.

    Article  CAS  PubMed  Google Scholar 

  165. Figueroa A, Vicil F, Sanchez-Gonzalez MA, Wong A, Ormsbee MJ, Hooshmand S, et al. Effects of diet and/or low-intensity resistance exercise training on arterial stiffness, adiposity, and lean mass in obese postmenopausal women. Am J Hypertens. 2013;26:416–23.

    Article  CAS  PubMed  Google Scholar 

  166. Williams AD, Ahuja KD, Almond JB, Robertson IK, Ball MJ. Progressive resistance training might improve vascular function in older women but not in older men. J Sci Med sport. 2013;16:76–81.

    Article  PubMed  Google Scholar 

  167. Layne JE, Nelson ME. The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc. 1999;31:25–30.

    Article  CAS  PubMed  Google Scholar 

  168. Winett RA, Carpinelli RN. Potential health-related benefits of resistance training. Prev Med. 2001;33:503–13.

    Article  CAS  PubMed  Google Scholar 

  169. Lohman T, Going S, Pamenter R, Hall M, Boyden T, Houtkooper L, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res. 1995;10:1015–24.

    Article  CAS  PubMed  Google Scholar 

  170. Quan HL, Blizzard CL, Sharman JE, Magnussen CG, Dwyer T, Raitakari O, et al. Resting heart rate and the association of physical fitness with carotid artery stiffness. Am J Hypertens. 2014;27:65–71.

    Article  PubMed  Google Scholar 

  171. Phillips SA, Das E, Wang J, Pritchard K, Gutterman DD. Resistance and aerobic exercise protects against acute endothelial impairment induced by a single exposure to hypertension during exertion. J Appl Physiol. 2011;110:1013–20.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Pierce GL, Eskurza I, Walker AE, Fay TN, Seals DR. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin Sci. 2011;120:13–23.

    Article  Google Scholar 

  173. Di Pilla M, Bruno RM, Taddei S, Virdis A. Gender differences in the relationships between psychosocial factors and hypertension. Maturitas. 2016;93:58–64.

    Article  PubMed  Google Scholar 

  174. Pelletier R, Ditto B, Pilote L. A composite measure of gender and its association with risk factors in patients with premature acute coronary syndrome. Psychosom Med. 2015;77:517–26.

    Article  PubMed  Google Scholar 

  175. Victor RG, Lynch K, Li N, Blyler C, Muhammad E, Handler J, et al. A cluster-randomized trial of blood-pressure reduction in black barbershops. N Engl J Med. 2018;378:1291–301.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This paper is based upon work from the European COST ACTION-Network for Research in Vascular Ageing CA18216 supported by COST (European Cooperation in Science and Technology) and endorsed by the German Society of Gender Medicine (DGesGM). AG has received funding from Spanish Ministry of Science, Innovation and Universities (IJC2018-037349-I) and from “la Caixa” Foundation (LCF/BQ/PR22/11920008).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

R-MB conceived the manuscript, provided critical feedback and drafted the manuscript. SV, GP, JN, MTL, KK, HS, CP and IM reviewed the literature and drafted the manuscript. US, PB, BH and AG revised the manuscript and provided critical feedback.

Corresponding author

Correspondence to Rosa-Maria Bruno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, RM., Varbiro, S., Pucci, G. et al. Vascular function in hypertension: does gender dimension matter?. J Hum Hypertens 37, 634–643 (2023). https://doi.org/10.1038/s41371-023-00826-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-023-00826-w

This article is cited by

Search

Quick links