Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical impact of anti-hypertensive treatment drug-gene pairs in the asian population: a systematic review of publications in the past decade

Abstract

Pharmacogenetics play an important role in determining the anti-hypertensive effects of blood pressure-lowering medications and have the potential to improve future patient care. Current literature on the topic, however, has a heavy focus on Caucasians and may not be generalisable to the Asian populations. Therefore, we have conducted this systematic review to summarise and evaluate the literature of the past decade. PubMed, Embase, and the Cochrane Register of Controlled Trials were searched for relevant studies from 1 January 2011 to 23 July 2021. The outcome of interest was the response to anti-hypertensive treatment in Asians according to each genetic polymorphism. A total of 26 studies with a total of 8837 patients were included in our review, covering five classes of anti-hypertensive agents—namely, angiotensin-converting enzyme inhibitors (ACEI), angiotensin II receptor blockers (ARB), beta-blockers (BB), calcium channel blockers (CCB), and thiazide-like diuretics. Response to ACEI therapy was most susceptible to genotypic variations, while the efficacy of ARB and CCB were affected by pharmacogenetic differences to varying extent. For BB, only variations in the ADRB1 genotype significantly affects therapeutic response, while the therapeutic efficacy of thiazide-like diuretics was correlated with genotypic variations in the REN and ACE. This systematic review evaluated the impact of pharmacogenetic variations on the therapeutic efficacy of anti-hypertensive treatment in Asians and has described numerous drug-gene pairs that are potentially clinically important. Future prospective studies with larger sample sizes and longer follow-up periods are needed to better elucidate the impact of these drug-gene pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram.
Fig. 2: Distribution of included studies across drug classes.

Similar content being viewed by others

References

  1. World Health Organization (WHO). Hypertension. 2021 [cited 2021 Aug 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension

  2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23. 2005/01/18 ed

    Article  PubMed  Google Scholar 

  3. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303:2043–50.

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization. Adherence to long-term therapies: evidence for action / [edited by Eduardo Sabaté]. 2003; Available from: https://apps.who.int/iris/handle/10665/42682

  6. Chobanian AV. Shattuck Lecture. The hypertension paradox-more uncontrolled disease despite improved therapy. N Engl J Med. 2009;361:878–87.

    Article  CAS  PubMed  Google Scholar 

  7. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet Lond Engl. 2002;360:1903–13.

    Article  Google Scholar 

  8. Hsu C, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923–8.

    Article  PubMed  Google Scholar 

  9. Lawes CMM, Vander Hoorn S, Rodgers A. International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet Lond Engl. 2008;371:1513–8.

    Article  Google Scholar 

  10. Yoon SS, Burt V, Louis T, Carroll MD Hypertension among adults in the United States, 2009-2010. NCHS Data Brief. 2012;(107):1–8.

  11. Diao D, Wright JM, Cundiff DK, Gueyffier F Pharmacotherapy for mild hypertension. Cochrane Database Syst Rev. 2012;(8):CD006742.

  12. Hiltunen TP, Donner KM, Sarin AP, Saarela J, Ripatti S, Chapman AB, et al. Pharmacogenomics of hypertension: a genome‐wide, placebo‐controlled cross‐over study, using four classes of antihypertensive drugs. J Am Heart Assoc 2015;4:e001521. 2015/01/28 ed.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Padmanabhan S, Newton-Cheh C, Dominiczak AF. Genetic basis of blood pressure and hypertension. Trends Genet Tig 2012;28:397–408.

    Article  CAS  PubMed  Google Scholar 

  14. Ehret GB, Caulfield MJ. Genes for blood pressure: an opportunity to understand hypertension. Eur Heart J. 2013;34:951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112:1365–79.

    Article  CAS  PubMed  Google Scholar 

  16. McDonough CW, Magvanjav O, Sá ACC, El Rouby NM, Dave C, Deitchman AN, et al. Genetic variants influencing plasma renin activity in hypertensive patients from the PEAR Study (Pharmacogenomic Evaluation of Antihypertensive Responses). Circ Genom Precis Med. 2018;11:e001854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366:l4898. 2019/08/30 ed.

    Article  PubMed  Google Scholar 

  19. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  20. Gupta S, Chattopadhyaya I, Agrawal BK, Sehajpal PK, Goel RK. Correlation of renin angiotensin system (RAS) candidate gene polymorphisms with response to Ramipril in patients with essential hypertension. J Postgrad Med 2015;61:21–6. 2014/12/17 ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Etemad A, Pishva SR, et al. Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene among Malay male hypertensive infjects in response to ACE inhibitors. J Renin-Angiotensin-Aldosterone Syst. 2015;16:872–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hong Z, Pan L, Fei J, Ma Z, Hong Z. A positive association between the human tissue kallikerin gene A2233C polymorphism and blood pressure response to benazepril. Clin Exp Hypertens. 2017;39:389–93. 2017/06/18 ed.

    Article  CAS  PubMed  Google Scholar 

  23. Luo JQ, Wang LY, He FZ, Sun NL, Tang GF, Wen JG, et al. Effect of NR3C2 genetic polymorphisms on the blood pressure response to enalapril treatment. Pharmacogenomics. 2014;15:201–8. 2013/09/26 ed.

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava K, Chandra S, Bhatia J, Narang R, Saluja D. Association of angiotensinogen (M235T) gene polymorphism with blood pressure lowering response to angiotensin converting enzyme inhibitor (Enalapril). J Pharm Pharm Sci. 2012;15:399–406. 2012/09/15 ed.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang N, Cui H, Yang L. Effect of angiotensin II type I receptor A1166C polymorphism on benazepril action in hypertensive patients: a family-based association test study. Arch Pharm Res. 2012;35:1817–22. 2012/11/10 ed.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, He F, Sun B, Liu R, Gao Y, Ren H, et al. Polytropic influence of TRIB3 rs2295490 genetic polymorphism on response to antihypertensive agents in patients with essential hypertension. Front Pharmacol. 2019;10:236. 2019/04/12 ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He F, Luo J, Zhang Z, Luo Z, Fan L, He Y, et al. The RGS2 (−391, C>G) genetic variation correlates to antihypertensive drug responses in Chinese patients with essential hypertension. PLoS One. 2015;10:e0121483. 2015/04/08 ed.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen WQ, Shu Y, Li Q, Xu LY, Roederer MW, Fan L, et al. Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan. PLoS One. 2013;8:e70341. 2013/08/14 ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Citterio L, Scioli GA, Glorioso N, Bigazzi R, Cusi D, Staessen JA, et al. Antihypertensive treatment guided by genetics: PEARL-HT, the randomized proof-of-concept trial comparing rostafuroxin with losartan. Pharmacogenomics J. 2021; Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2010615119&from=export: https://doi.org/10.1038/s41397-021-00214-y

  30. Gong HT, Ma XL, Chen BX, Xu XY, Li Q, Guo CX, et al. Polymorphisms of the angiotensin II type 1 receptor gene affect antihypertensive response to angiotensin receptor blockers in hypertensive Chinese. Genet Mol Res. 2013;12:2068–75. 2013/08/06 ed.

    Article  CAS  PubMed  Google Scholar 

  31. Gong HT, Mu LY, Zhang T, Xu XY, Du FH. Association of mononucleotide polymorphisms of angiotensinogen gene at promoter region with antihypertensive response to angiotensin receptor blockers in hypertensive Chinese. J Renin Angiotensin Aldosterone Syst. 2019;20:1470320319827205. 2019/02/26 ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji X, Qi H, Li DB, Liu RK, Zheng Y, Chen HL, et al. Associations between human aldosterone synthase CYP11B2 (−344T/C) gene polymorphism and antihypertensive response to valsartan in Chinese patients with essential hypertension. Int J Clin Exp Med. 2015;8:1173–7. 2015/03/19 ed.

    PubMed  PubMed Central  Google Scholar 

  33. Jia J, Men C, Tang KT, Zhan YY. Apelin polymorphism predicts blood pressure response to losartan in older Chinese women with essential hypertension. Genet Mol Res. 2015;14:6561–8.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang S, Hsu YH, Venners SA, Zhang Y, Xing H, Wang X, et al. Effects of protein coding polymorphisms in the kallikrein 1 gene on baseline blood pressure and antihypertensive response to irbesartan in Chinese hypertensive patients. J Hum Hypertens. 2011;25:327–33.

    Article  CAS  PubMed  Google Scholar 

  35. Kamide K, Asayama K, Katsuya T, Ohkubo T, Hirose T, Inoue R, et al. Genome-wide response to antihypertensive medication using home blood pressure measurements: a pilot study nested within the HOMED-BP study. Pharmacogenomics. 2013;14:1709–21.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZL, Li HL, Wen ZP, Yang GP, Zhang W, Chen XP. Influence of G-protein β-polypeptide 3 C825T polymorphism on antihypertensive response to telmisartan and amlodipine in Chinese patients. Chin Med J Engl. 2016;129:8–14. 2015/12/30 ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang ZL, Zhu MM, Li HL, Shi LH, Chen XP, Luo J, et al. Influence of PRKCH gene polymorphism on antihypertensive response to amlodipine and telmisartan. Clin Exp Hypertens. 2017;39:726–31. 2017/06/24 ed.

    Article  PubMed  Google Scholar 

  38. Chen L, Xiao T, Chen L, Xie S, Deng M, Wu D. The association of ADRB1 and CYP2D6 polymorphisms with antihypertensive effects and analysis of their contribution to hypertension risk. Am J Med Sci. 2018;355:235–9. 2018/03/20 ed.

    Article  PubMed  Google Scholar 

  39. Si D, Wang J, Xu Y, Chen X, Zhang M, Zhou H. Association of common polymorphisms in β1-adrenergic receptor with antihypertensive response to carvedilol. J Cardiovasc Pharmacol. 2014;64:306–9. 2014/10/08 ed.

    Article  CAS  PubMed  Google Scholar 

  40. Jung E, Ryu S, Park Z, Lee J-G, Yi J-Y, Seo DW, et al. Influence of CYP2D6 polymorphism on the pharmacokinetic/pharmacodynamic characteristics of carvedilol in healthy Korean volunteers. J Korean Med Sci. 2018;33:e182–e182.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guo C, Pei Q, Tan H, Huang Z, Yuan H, Yang G. Effects of genetic factors on the pharmacokinetics and pharmacodynamics of amlodipine in primary hypertensive patients. Biomed Rep. 2015;3:195–200.

    Article  PubMed  Google Scholar 

  42. He F, Li L, Liu M, Lin W, Liu L, Sun Y, et al. TRIB3 rs6037475 is a potential biomarker for predicting felodipine drug response in Chinese patients with hypertension. Ann Transl Med. 2020;8. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L632001766&from=export: https://doi.org/10.21037/atm.2020.03.176

  43. Huang CC, Chung CM, Hung SI, Leu HB, Wu TC, Huang PH, et al. Genetic variation in renin predicts the effects of thiazide diuretics. Eur J Clin Invest. 2011;41:828–35.

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Yang P, Wu S, Yuan J, Shen C, Wu Y, et al. Gender-specific association between ACE gene I/D polymorphism and blood pressure response to hydrochlorothiazide in Han Chinese hypertensive patients. Biochem Genet. 2011;49:704–14. 2011/06/08 ed.

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Zhou Y, Yang P, Niu JQ, Wu Y, Zhao DD, et al. Interaction of ACE and CYP11B2 genes on blood pressure response to hydrochlorothiazide in Han Chinese hypertensive patients. Clin Exp Hypertens N. Y N. 1993. 2011;33:141–6.

    CAS  Google Scholar 

  46. Cooper-DeHoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol. 2016;12:110–22.

    Article  CAS  PubMed  Google Scholar 

  47. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72. 2003/05/16 ed.

    Article  CAS  PubMed  Google Scholar 

  48. Lee WK, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental models to clinical applications. J Hum Hypertens. 2000;14:631–47.

    Article  CAS  PubMed  Google Scholar 

  49. Padmanabhan S, Paul L, Dominczak AF. The pharmacogenomics of anti-hypertensive therapy. Pharm Basel Switz. 2010;3:1779–91.

    CAS  Google Scholar 

  50. John HF, Sarah LL Physiology, Renin Angiotensin System. 2021 [cited 2021 Oct 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470410/

  51. Fajar JK, MSusanti, Pikir BS, Saka PNB, Sidarta EP, Tamara F, et al. The association between angiotensin II type 1 receptor A1166C gene polymorphism and the risk of essential hypertension: a meta-analysis. Egypt J Med Hum Genet. 2019;20. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2003193920&from=export: https://doi.org/10.1186/s43042-019-0016-3https://jmhg.springeropen.com/track/pdf/10.1186/s43042-019-0016-3.pdf

  52. Liu D-X, Zhang Y-Q, Hu B, Zhang J, Zhao Q Association of AT1R polymorphism with hypertension risk: An update meta-analysis based on 28,952 subjects. J Renin-Angiotensin-Aldosterone Syst. 5;16.

  53. Wang H, Jielin L, Liu K, Liu Y, Wang Z, Lou Y, et al. β1-adrenoceptor gene Arg389Gly polymorphism and essential hypertension risk in general population: A meta-analysis. Mol Biol Rep. 2013;40:4055–63.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L, et al. Association of Hypertension Drug Target Genes With Blood Pressure and Hypertension in 86 588 Individuals. Hypertension. 2011;57:903–10.

    Article  CAS  PubMed  Google Scholar 

  55. Prudente S, Sesti G, Pandolfi A, Andreozzi F, Consoli A, Trischitta V. The Mammalian Tribbles Homolog TRIB3, Glucose Homeostasis, and Cardiovascular Diseases. Endocr Rev. 2012;33:526–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song Y, Liu X, Zhu X, Zhao B, Hu B, Sheng X, et al. Increasing trend of diabetes combined with hypertension or hypercholesterolemia: NHANES data analysis 1999–2012. Sci Rep. 2016;6:36093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nanditha A, Ma RCW, Ramachandran A, Snehalatha C, Chan JCN, Chia KS, et al. Diabetes in Asia and the Pacific: Implications for the Global Epidemic. Diabetes Care. 2016;39:472–85.

    Article  CAS  PubMed  Google Scholar 

  58. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes Targets Ther. 2013;6:327–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DT, WT and NC conceived of the presented idea. ST and AM carried out the study. ST and AM contributed equally to the final version of the manuscript as first authors. DT, WT and NC helped supervise the project.

Corresponding author

Correspondence to Doreen Su-Yin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S.W.Y., Mai, A.S., Chew, N.W.S. et al. The clinical impact of anti-hypertensive treatment drug-gene pairs in the asian population: a systematic review of publications in the past decade. J Hum Hypertens 37, 170–180 (2023). https://doi.org/10.1038/s41371-022-00765-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-022-00765-y

Search

Quick links